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Abstract

The growing access to large administrative datasets with rich covariates presents an oppor-
tunity to revisit classic two-stage least squares (25LS) applications with machine learning (ML).
We develop Two-Stage Machine Learning, a simple and efficient estimator for nonparametric
instrumental variables (NPIV) regression. Our method uses ML models to flexibly estimate
nonparametric treatment effects while avoiding the computational complexity and statistical
instability of existing machine learning NPIV approaches. Our procedure has two steps: first,
we predict the outcomes given instruments and covariates (the reduced form) and extract a
basis from this predictor; second, we predict the outcomes using the treatment and covariates,
but where the predictions are projected onto the learned basis of instruments. We prove that
under a testable condition, our estimation error depends entirely on the reduced-form predic-
tion task, where ML methods excel. We also develop a bias correction procedure that provides
valid confidence intervals for scalar summaries like average derivatives. In an empirical ap-
plication to California supermarket data featuring bunching at 99-ending price points, we find
our machine learning approach is crucial for modeling discontinuities in demand at the dollar
boundary: we reduce NPIV estimation error nearly eight-fold compared to previous estimators

and estimate a price elasticity that is 2.5-6 times larger than prior estimates.
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1 Introduction

Instrumental variable (IV) regression with continuous treatments and instruments underlies ap-
plications in empirical economics spanning returns to schooling (Card, 2001), the price elastic-
ity of demand (Hausman, 1996), effects of monetary policy (Stock and Watson, 2018), and the
marginal propensity to consume (Blundell et al., 2008). These applications have traditionally em-
ployed linear specifications solved with two-stage least squares (2SLS). The increasing availability
of high-quality administrative datasets with large sample sizes and rich covariate information
now makes it feasible to estimate machine learning models that can flexibly learn complex non-
linearities, discontinuities, and interaction effects. In settings with even moderate dimensionality
and sample size, machine learning methods like gradient boosted trees or neural networks achieve
substantially higher predictive accuracy than traditional nonparametric estimators such as sieve
and kernel regression. The parallel developments in data availability and powerful predictive

tools present an opportunity to revisit classic 2SLS applications in economics.

In this paper, we use machine learning models to estimate the nonparametric effects (also known
as the structural function), fo(D, X), of an endogenous continuous treatment D on an outcome Y’
given covariates X, in a setting with instruments Z. For example, in a demand estimation setting
where D is price and X contains product and market characteristics, then fo(D, X) would be the
demand function. While heterogeneity in fj is interesting in its own right, flexibly estimating non-
linearities and interactions in fo(D, X) also enables more accurate estimation of summaries like
the average price elasticity. We adopt the nonparametric instrumental variables (NPIV) frame-
work of Newey and Powell (2003), where the structural function fy(D, X) is the solution to the
conditional moment equality E[Y|Z, X] = E[fo(D, X)|Z, X].! Our goal is to solve the NPIV mo-
ment equation using machine learning models to represent both fy(D, X) and E[fy(D, X)|Z, X]
— note that the first of these is a function of the treatment D, whereas the second is a function of
the instruments Z. This approach allows researchers to leverage the excellent out-of-performance
prediction capabilities of modern machine learning methods to capture nonlinearities and hetero-

geneity in causal effects.

However, NPIV is both computationally and statistically difficult to solve with arbitrary machine
learning models. The main challenge is nonlinearity. Under a linear model for fj, the moment
equality can be solved by two-stage least squares. In the first stage, we estimate E[D|Z, X| —

i.e. we predict the treatment given the instruments and covariates. Then, in the second stage we

'Equivalently, we can write the GMM-type condition, E[Y — fo(D, X)|Z, X] = 0.
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predict Y using the first-stage fitted values E[D|Z, X] and the covariates. When fy(D, X) is non-
linear, the traditional 2SLS approach fails because E[fy(D, X)|Z, X] # fo(E[D|Z, X], X) — the
“forbidden regression” problem (Hausman, 1983). Instead, for every candidate solution f(D, X),
we must solve an additional prediction task to estimate E[f(D, X)|Z, X] — the best predictor of
f(D,X) given Z and X. Early work in NPIV introduced some non-linearity by assuming that
fo(D, X) is linear in a transformation of D and X, such as a sieve or kernel basis (Newey and
Powell, 2003; Singh et al., 2019), but these methods have limited ability to model complicated
real-world data, as we show later in our empirical application. In an important extension, Ai
and Chen (2003); Chen and Ludvigson (2009); Chen et al. (2023) introduce a computationally-
tractable procedure that models f, with an arbitrary machine learning algorithm but by modeling
E[f(D,X)|Z, X] as linear in a fixed sieve of the instruments uniformly across all f(D, X) — the

linearity assumption is moved from fj onto the instruments.

A recent and growing literature uses machine learning methods like trees or neural networks to
model both fy(D, X) and E[fy(D, X)|Z, X], but incorporated into statistically difficult and compu-
tationally intensive procedures. For example, DeeplV (Hartford et al., 2017; Li et al., 2024) replaces
the traditional first stage with conditional density estimation, a statistically-intractable problem in
even moderately-high dimensions. Other estimators solve the conditional moment equality di-
rectly using adversarial training (Bennett et al., 2019; Dikkala et al., 2020; Muandet et al., 2020;
Liao et al., 2020), or by iterating between first and second stages (Xu et al., 2020; Bakhitov and
Singh, 2022). In addition to high computational costs, the instability and statistical difficulty of

these procedures regularly results in large estimation errors relative to simpler methods.

We introduce a novel two-stage procedure for NPIV that supports arbitrary machine learning
models in both stages — we call our procedure Two-Stage Machine Learning. In addition to being
simple to implement in practice, we achieve an order of magnitude improvement in estimation
error compared to previous methods on large real-world datasets. We take Chen et al. (2023) as our
starting point, which demonstrates that we can efficiently solve NPIV using machine learning to
model fy, provided we represent the instruments linearly in some basis like a sieve. Call this basis
#(Z,X). In our central theoretical result, we show that the NPIV estimation error with such an
approach is ultimately limited by how well ¢(Z, X) linearly predicts the outcomes Y. This insight
suggests a natural solution: learn ¢(Z, X') by using machine learning to predict Y given Z and
X, and then extract a basis from the fitted predictor. This prediction task estimates E[Y|Z, X] —
called the “reduced-form” in linear IV. Since E[Y'|Z, X| = E[fo(D, X)|Z, X|, constructing ¢(Z, X))



from the reduced form guarantees that ¢(Z, X) are strong instruments for fo(D, X).

Accordingly, Two-Stage Machine Learning works as follows: in our first stage, we predict Y given
Z and X using machine learning, and construct a basis ¢(Z, X') from the predictor. For example,
we fit the reduced form with gradient-boosted trees, and then take ¢(Z, X) to be the output of
each individual tree in the ensemble. In our second stage, we estimate the structural function
with machine learning as in Chen et al. (2023) using the ¢(Z, X) learned in the first stage. This
involves predicting Y as a function of f(D, X) but where the predictions are projected onto the
basis ¢(Z, X ). To our knowledge, this is the first NPIV estimator with an easy-to-run two stage
structure that incorporates off-the-shelf ML predictors for both f; and E[fy(D, X)|Z, X]. Beyond
helping to choose the basis ¢(Z, X ), the reduced form also serves as a convenient specification test
for existing methods like Newey and Powell (2003); Singh et al. (2019); Chen et al. (2023): if sieve
or kernel methods are not the best mean-squared error predictor for the reduced form, then they

cannot provide the best model for E[fy(D, X)|Z, X].

Another contribution of our paper is to develop a measure of the out-of-sample estimation er-
ror for NPIV estimators, providing a way to select between multiple models, and allowing us
to demonstrate the estimation benefits of Two-Stage Machine Learning directly on real datasets.
For any fixed NPIV estimate f, a natural measure of how well we satisfy the IV moment equa-
tion is E[(Y — E[f(D, X)|Z, X])2]. We call this quantity the “NPIV MSE”, and define the “NPIV
R?” analogously. For a given f, estimating this quantity out-of-sample is straightforward. First,

A~

in a training sample, we estimate E[f(D, X)|Z, X] — equivalent to finding the best predictor of
f(D, X) given Z and X, which we can do with any prediction algorithm. Then in a test sample,
we use this predictor to compute the estimated value of the NPIV MSE. The best achievable value
of the NPIV MSE is reduced form MSE, and moreover the optimal value is achieved by the true
structural function fy. This provides a very simple diagnostic: if the out-of-sample NPIV MSE is
equal to the out-of-sample reduced form MSE, then we know we have a good estimate of the struc-
tural function. The difference between the NPIV MSE and the reduced form MSE is a measure of

the remaining NPIV estimation error.

We now preview the practical estimation performance of Two-Stage Machine Learning compared
to other NPIV estimators on a demand estimation task with Nielsen scanner data using the out-
of-sample estimation error measure described above. We provide a complete description of the
application later. For several estimators, we report the NPIV R?, and the difference between the

NPIV R? and the optimal value (the reduced form R?) in Table 1. The key measure of estimation
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error is the rightmost column. Our Two-Stage Machine Learning method using gradient-boosted
tree ensembles (GBoost 2SML) achieves nearly 8x smaller NPIV estimation error than the best

existing NPIV estimator on this dataset.

Table 1: Comparison of Estimation Error Across NPIV Estimators on Compiani (2022)

Estimator NPIV R? NPIV R? vs E[Y|Z]
Our method GBoost 25SML 0.718 0.023
2SLS 0.186 0.555
Sieve IV (Newey and Powell, 2003) 0.463 0.278
Without trees Kernel IV (Singh et al., 2019) 0.491 0.250
Deep IV (Hartford et al., 2017) 0.295 0.446
Deep Feature IV (Xu et al., 2020) 0.425 0.316
. GBoost/Spline (Chen et al., 2023) 0.560 0.181
Withtrees | cemble IV (Dikkala etal., 2020) 0520 0.221

Notes: NPIV estimation results for estimating the demand function using the dataset from Compiani (2022).
“NPIV R?” is the out-of-sample R? value corresponding to our NPIV MSE as described in detail in Section 4.
All results are averaged over test folds with cross-fitting. The best achievable value for the NPIV R? by any NPIV
estimator is the R? of the reduced form, which is 0.741 in this application. The column “NPIV R% vs E[Y|Z]”
shows how close each method is to achieving that optimal value. The true structural function will achieve ap-
proximately 0.

We prove finite-sample-valid error bounds and convergence guarantees for our second stage op-
timization problem using any basis ¢(Z, X). This optimization problem encompasses a broad
class of NPIV estimators including Sieve IV (Newey and Powell, 2003), Sieve Minimum Distance
(Ai and Chen, 2003; Chen et al., 2023), Kernel IV (Singh et al., 2019), and Deep Feature IV (Xu
et al., 2020). Our main theoretical contribution is to show that under a testable condition, the
estimation error for any of these methods depends entirely on the reduced-form prediction task.
Specifically, we prove that, under this condition, the NPIV estimation error is equivalent to that
of ridge regression of Y on ¢(Z, X'). This result differs from previous analyses of the same es-
timation strategy in two ways: the error bound depends on the complexity of the basis ¢(Z, X)
instead of on the class for representing the structural function, and it does not require that ¢(Z, X)
uniformly approximates E[f(D, X)|Z, X] for all functions f. We then specialize the analysis to
Two-Stage Machine Learning, where we learn ¢(Z, X) adaptively from the reduced form in a sep-
arate sample. We empirically verify the testable condition across multiple datasets for Sieve 1V,
Kernel IV, and Two-Stage Machine Learning with gradient-boosted trees. Our theory explains
why Two-Stage Machine learning out-performs these other methods in our empirical application:
ridge regression of Y on our gradient-boosted tree basis achieves an out-of-sample R? that is 0.33

better than sieve regression, and 0.2 better than kernel ridge regression.
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While accurately estimating the full structural function fj is valuable, many empirical applica-
tions ultimately aim to estimate specific scalar summaries such as the average price elasticity or
marginal propensity to consume. For these estimands, we provide valid inference and asymptotic
normal confidence intervals. Because machine learning models typically introduce bias to reduce
variance, naively using our estimated structural function to compute a point estimate will not
yield an asymptotically normal estimator. Therefore, we develop a bias correction procedure based
on double/debiased machine learning (Chernozhukov et al., 2023) that yields an unbiased point
estimate for estimands like the average derivative with valid confidence intervals. The bias correc-
tion procedure requires solving a second conditional moment equation, facing the same statistical
and computational challenges as NPIV. We show that an analogous Two-Stage Machine Learning
procedure applied to a different loss function also solves the debiasing problem. Our finite sample
error bound applies to both estimating the structural function and the debiasing step, so we can
derive conditions under which debiased Two-stage Machine Learning satisfies the convergence

rates for asymptotic normality from Chernozhukov et al. (2023).

We evaluate two stage machine learning using synthetic and semi-synthetic data. First, we assess
how well our estimate approximates the true structural function as measured in mean squared
error — this validates our Ly-convergence guarantees and demonstrates how well we can capture
rich heterogeneity in the structural function. Our evaluation uses two semi-synthetic benchmarks
constructed by adding correlated noise to large datasets on taxi fares and house prices. Compared
to existing NPIV estimators, we improve R? for the true structural function on the two benchmarks
by at least 0.1 and 0.15 respectively. Second, we assess the coverage of our debiased confidence
intervals on a synthetic average derivative estimation task. We improve coverage for the 95%
confidence interval from 70% without debiasing to 94.4% with debiasing, demonstrating that bias

correction can be quite important for valid inference in practice.

Finally, we provide an end-to-end application of our debiased Two-Stage Machine Learning pro-
cedure to demand estimation using the California supermarket data from Compiani (2022). This
dataset features extensive bunching at 9-ending price points. For example, 40% of our 38,800 ob-
servations on organic strawberries? have a price ending in 0.99, and 22% have a price of exactly
$4.99. The tendency of prices to bunch at 9-endings has been widely observed (Anderson and
Simester, 2003; Snir and Levy, 2021), contributing to uniform pricing (DellaVigna and Gentzkow,
2019) and asymmetric price rigidity (Levy et al., 2020). Our Two-Stage Machine Learning ap-

2 All observations and prices in this paper are averages over products at the store-week level, not UPC-level prices.
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proach using tree ensembles excels at flexibly modeling the discontinuities in demand at the dollar
boundary, resulting in the 8x reduction in NPIV estimation error compared to the best previous
estimator as documented in Table 1. Our debiased estimate of the average own-price elasticity
is —13, between 2.5 and 6 times larger than previous estimates reported using this same dataset
(Compiani, 2022; Chen et al., 2023). We find that our estimate is driven by large responses at the
dollar boundary; for example, our estimated average price elasticity among the observations with
price exactly $4.99 is around —30. Our results have immediate implications for price rigidity: a su-
permarket using 99-ending prices cannot pass small increases in cost onto the consumer without

realizing potentially large decreases in demand.

The paper proceeds as follows. Section 2 describes the NPIV framework and reviews previous
estimators. Section 3 introduces our new estimator. Section 4 proposes a new measure of out-
of-sample NPIV estimation error, which we use for model selection. Section 5 presents our main
theoretical results. Section 6 describes our debiasing procedure to obtain standard errors. Section 7
evaluates our method with synthetic data. Section 8 presents our empirical application to demand

estimation. Section 9 concludes.

2 Problem Setup

We adopt the nonparametric instrumental variables (NPIV) framework of Newey and Powell
(2003). Let D € D denote the treatment variable, Z € Z the instruments, X € X" the covariates,

and Y € R the outcome. Our object of interest is the structural function fj satisfying
Y = fo(D,X)+e EZ X]=0. 1)

Notice that the NPIV framework already imposes a substantive restriction: the structural function
exhibits heterogeneity only in (D, X) with unobserved variables entering additively through e.
Including a very rich covariate set X weakens this heterogeneity restriction and also possibly

helps secure the exogeneity restriction, E[¢|Z, X| = 0.

We are often interested in scalar summaries of f, like an average derivative. However, the full
structural function itself can also be of independent interest, e.g. for predicting counterfactual out-
comes, or flexibly assessing heterogeneity in treatment effects. We now provide some examples:

Example 1 (Demand Estimation). For a demand estimation problem, Y might be market share for a good,

D endogenous prices, and X other market-level covariates. For example, in the strawberry demand setting
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of Compiani (2022), Y is market share for organic/non-organic strawberries, D is prices of organic/non-
organic strawberries, and X includes a measure of taste for organic products, availability of other fruit,
and market-level income. Common instruments Z are the price of the same product in nearby markets
(Hausman, 1996), and wholesale prices faced by retailers. In this setting, fo(D, X) is the demand function,
and the average derivative with respect to D is the average price elasticity of demand.

Example 2 (Consumption out of Permanent Income). Instrumental variables have been widely used
to disentangle transitory and permanent components of income (Dynan et al., 2004; Blundell et al., 2008;
Straub, 2019). In this setting, Y is household consumption, D is household income, and Z is an instrument
for permanent income such as lagged or future income. Relevant covariates X include, age, family size,
education, and asset position. The marginal propensity to consume out of permanent income is the average
derivative of the structural function fo(D,X) with respect to D. The heterogeneity in X is of particular

interest, including how strongly the spending response depends on liquid assets and debt.

While the covariates X are important in many applications, without loss of generality, we shorten

notation by writing D for (D, X) and Z for (Z, X).3
There are two equivalent ways to express fj as the solution to an optimization problem. First, (1)

implies that E[Y — fy(D)|Z] = 0, giving rise to the GMM-style problem:

fo = argmin { max E[g(Z)(Y — fO(D))]} (2)
¥ g

Alternatively, the moment condition can be written as:
E[Y|Z] = E[fo(D)|Z]. (3)

Applying the characterization of the conditional expectation as the best mean squared error pre-

dictor, we get the nested regression problem:
fo = argminE (¥ EIf(D)|2])"] @)

Unfortunately, minimizing the (equivalent) optimization problems (2) and (4) directly over flexi-
ble function classes like gradient-boosting or neural networks presents substantial computational
challenges. In either case, evaluation of the objective function at each candidate f requires solving

a nested optimization problem — for (2), the optimization over g; for (4) to estimate E[f(D)|Z].

3This is without loss of generality for our algorithm, but not for all NPIV algorithms. See Appendix F.
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2.1 Previous Approaches to NPIV

A large and growing literature studies methods for solving the NPIV problems (2) and (4). Most
existing estimators fall into one of two broad categories. First, methods that impose linearity
(possibly in a Sieve or RKHS basis) on either E[-|Z] or fy(D). Either linearity restriction will result
in a simple and computationally-efficient two stage procedure. The second category are methods
that use arbitrary machine learning models for both E[-|Z] and fy(D), but incorporated into an
iterative or adversarial /minimax training procedure. We summarize existing NPIV estimators in
Table 2. Our 2SML estimator is the first to support arbitrary machine learning estimators in both
the first and second stage, but while maintaining an easy-to-use, computationally efficient, and

non-iterative two-stage structure.

Table 2: Existing NPIV Estimators

Estimator E[-|Z] fo(D) Iterative? Reference

2SLS Linear Linear No

Split Sample ML IV Any ML Linear No Chen et al. (2020)

Sieve IV Sieve Sieve No Newey and Powell (2003)
Kernel IV RKHS RKHS No Singh et al. (2019)

Sieve Minimum Distance Sieve Any ML No Ai and Chen (2003)
SAGD IV RKHS Any ML No Fonseca et al. (2024)
Deep Feature IV Any ML Any ML Yes Xu et al. (2020)

Minimax Approaches Any ML Any ML Yes See Section 2.1.3

Two Stage ML AnyMLv AnyMLVv No Vv This Work

Note: Deep IV (Hartford et al., 2017; Li et al., 2024) performs conditional density estimation instead of estimating
E[-|Z]. We discuss Deep IV at the end of Section 2.1.

2.1.1 Two Stage Least Squares
2SLS is an important special case of the optimization problem (4) when fj is linear. Let D € R%.
Applying linearity we have:

min ® [(Y - IE[BTDZ])Q} = min E [(Y . ﬁTE[DyZ]ﬂ .

In this last expression, E[D|Z] is the traditional first-stage regression of D on Z. Importantly, we
can estimate the first-stage once, and then optimize over j afterward, resulting in a computationally-
efficient algorithm. Traditional 2SLS approximates E[D|Z] with a linear model, but Chen et al.
(2020) shows that with appropriate sample-splitting, we can fit E[D|Z] using arbitrary machine

learning models. However, a linear model for fy will usually be high misspecified, especially
9



with high-dimensional covariates. Later, in our empirical application, we find that imposing a

misspecified linear model for fj leads to very strong attenuation of the average price elasticity.

Previous methods have introduced non-linearity into fo by representing the structural function
as linear in a fixed transformation of D and X, such as a sieve (Newey and Powell, 2003; Ai and
Chen, 2003, 2007) or RKHS basis Singh et al. (2019). These methods still have a simple two-stage
procedure, but now the first stage requires predicting every element of the transformation instead
of just D. One of our key empirical findings is that these fixed transformation are insufficient
for modeling the structural function in finite samples — this finding is corroborated by recent

theoretical results for NPIV in Kim et al. (2025).

2.1.2 Projected Loss Minimization

The methods we have discussed so far impose linearity in fo(D) to obtain a computationally-
efficient two-stage procedure, while allowing E[-|Z] to be arbitrary. In an important extension, Ai
and Chen (2003); Chen and Ludvigson (2009); Chen et al. (2023) show that we can alternatively
impose linearity in E[-|Z], while allowing fo(D) to be arbitrary. The algorithm minimizes the
mean squared error of prediction Y given D, but where the predictions are first projected onto
a basis ¢(Z) — therefore we call this optimization problem “Projected Loss Minimization”. This
approach has been adopted as a sub-step of more complicated iterative methods like Xu et al.
(2020); Bakhitov and Singh (2022), and will be the starting place for our method that we introduce

in Section 3.

We now describe the approach. The challenge with solving (4) when representing fy with a ma-
chine learning model is that for each candidate function f (D), we have to solve a nested regression
problem to estimate E[f(D)|Z]. However, if we estimate E[f(D)|Z] using ridge regression in some
basis ¢, this has a closed-form solution, resulting in a straightforward convex optimization prob-

lem.

Let ¢ : Z — R% denote a feature map. Let 7; denote the operator that maps f € JF onto the best
approximation of E[f(D)|Z] that is linear in ¢. In other words (73 f)(z) = #(2) " B(f), where

B(f) = argminE[(f(D) — ¢(Z) " B)?.

BeR%
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In the projected loss minimization framework, we replace (4) with:

. 2
E|(Y - Z .
mink (¥ - (7,)(2))’] ®)
The finite sample version of (5) can be solved efficiently, even over complicated function classes
F: given a sample of n independent observations (d;, z;, yi);, let y € R™ denote the outcome
vector and ® € R"*9 the feature matrix with i-th row ¢(z;)". With slight abuse of notation, let
f(D) € R™ denote the vector with i-th element f(d;). For A > 0, define the (regularized) projection

matrix:
Py=®(@ ' ®+A)TdT, (6)
where + denotes the Moore-Penrose pseudoinverse.* The sample analog of (5) is

1
in—|ly — P, f(D)|3. 7
g;ggnlly sf (D)l (7)

The projected loss (7) is a convex optimization problem amenable to standard machine learning

algorithms including gradient boosting and neural networks.

An exactly analogous projection approach works for solving the GMM-type problem Equation (2),
resulting in the finite sample problem:

min [ P5(y — F(D)) B ®

The two optimization problems (7) and (8) have identical gradients, and so are equivalent. Ai and
Chen (2003); Chen and Ludvigson (2009); Chen et al. (2023) follow the GMM-type approach in
Equation (8), so they call their method “Sieve Minimum Distance”. Fonseca et al. (2024) solves a
different optimization problem, but also represents E[f(D)|Z] via the closed-form ridge regression

solution in an RKHS.

*This formulation supports the case where d, > n and infinite-dimensional ¢. In these settings, the projection can
still be computed efficiently as we describe in Appendix A. When A\ = 0, the inverse need not exist; the pseudoinverse
instead provides the minimum-norm solution to the implied least-squares problem.

11



2.1.3 Iterative Methods

Notice that for the ¢-projected optimization problem (5) to approximate the original problem (4)
accurately, E[f(D)|Z] must be well-approximated by linear functions of ¢(Z) uniformly over f €
F. This requirement becomes increasingly restrictive as F grows more complex. Recent work
addresses this limitation by adaptively learning ¢ jointly with optimizing over f. These more
complicated procedures still involve solving the projected loss minimization problem (7) as a sub-

step.

For example, Xu et al. (2020) and Bakhitov and Singh (2022) employ an iterative procedure. First,
given ¢, they solve (7) for f. Second, given a f , they update ¢ by solving

1 -
min - [I/(D) - @85. 9)

)

They alternate between these two stages until convergence. This constitutes a bi-level optimiza-

tion problem, which can be quite difficult to solve (Hong et al., 2023; Petrulionyteé et al., 2024).
Several methods (Bennett et al., 2019; Dikkala et al., 2020; Muandet et al., 2020; Liao et al., 2020)
solve (2) directly with minimax optimization. This is equivalent to learning ¢ and f jointly while
solving (8):

1
i 2\ Psly — f(D))|I? 1
i e |Pa(y = £(D) B, o

While theoretically appealing, such minimax formulations present substantial computational chal-
lenges in practice. Section 7 of Dikkala et al. (2020) demonstrates that (10) can be implemented
using tree ensembles by alternating between first and second stages, as in Xu et al. (2020) — they

call this algorithm “Ensemble IV”.

Finally, a few methods based on conditional density estimation do not fit neatly into the projection-
based framework we’ve outlined above. Deep IV (Hartford et al., 2017; Li et al., 2024) is a two stage
procedure using arbitrary machine learning algorithms, but where the first stage requires estimat-
ing the full conditional distribution of the treatments given the instruments. This is a notoriously
difficult problem except with very low dimensional instruments, and is more or less infeasible
when both treatments and instruments are high-dimensional, as is the case with rich covariates.
See Ji et al. (2023) for a related discussion on conditional density estimation for partial identifica-

tion.
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3 Two-Stage Machine Learning (2SML)

Our algorithm, Two-Stage Machine Learning, solves the projected loss minimization problem (7),
but learns ¢ adaptively from the data using the reduced form. Recall that the central challenge
with (7) is finding features ¢ such that E[f(D)|Z] is approximately linear in ¢(Z) for all f. If f
is linear, this reduces to estimating E[D|Z]. But for flexible non-linear function classes like tree
ensembles or neural networks, we need fixed features ¢ that approximate E[f(D)|Z] uniformly

over all f € F, a difficult and potentially impossible task.

Our key insight is to side-step this challenge by directly targeting the population minimizer of
problem (4), which is fy(D). From the definition of the NPIV problem, we know that E[fy(D)|Z] =
E[Y'|Z]. This suggests a natural strategy: if we can construct ¢ such that E[Y|Z] is linear in ¢(2),
then E[fo(D)|Z] is guaranteed to be linear in ¢(Z) as well. The following result is immediate:

Proposition 1. For any ¢ : Z — R%, if there exists 3y € R% such that E[Y|Z = 2] = ¢(2) " By, then
(Tgfo)(2) = E[fo(D)|Z = z|. Furthermore, fy achieves the minimum of the projected loss (5), and the

minimum of (4) and (5) are identical.

The conditional expectation E[Y'| Z] is the best mean-squared error predictor of Y given Z. There-
fore, we can predict Y given Z using machine learning, and then construct a representation ¢ from

the resulting predictor (in a way that describe in more detail below).
The observations above motivate our two-stage procedure:

Stage 1 (Reduced Form): Fit a machine learning model §(Z), to predict Y given Z. Extract a
feature representation ¢(Z) from this predictor such that §(Z) = ¢(Z) ' 3.

Stage 2 (Projected Loss Minimization): Solve the projected loss minimization problem:

1
in—||y — P, f(D)|?
qu"ggnlly oS (D)|I2

with the learned features ¢ from Stage 1 to get an estimate f.

By learning ¢ directly from the reduced-form relationship, we ensure that the features are well-
suited for approximating the conditional expectation of the true structural function, but without
the computational complexity of iterative or minimax methods. Furthermore, as we will demon-
strate later, the estimation error for NPIV with projected loss minimization is driven by the ability
of ¢(Z) to predict Y. Therefore, our choice of ¢(Z) is specifically tailored to the key statistical
challenge, leading to substantially more accurate estimation. Note that because we make use of
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Algorithm 1 Two Stage Machine Learning (2SML)

1: INPUT:
e Dataset with n observations of (Y, D, Z)
¢ Function classes G and F
¢ Projection regularization parameter A > 0
2: Divide the observations into two disjoint samples.
3: FIRST STAGE:
In the first sample, solve the reduced form prediction problem:

g = argmin [ly — g(2)|3,
geg

with corresponding representation ¢ such that §(z) = ¢(z)" 3, for some 8.
For example, for gradient-boosted trees, ¢ would be the output of each individual tree.
4: Let ® be the matrix with rows ¢(z;) for i in the second sample. Compute the regularized
projection matrix:
Py=0(@"®+ AT

5: SECOND STAGE:
In the second sample, solve the projected loss minimization problem:

f = argmin ||y — P,f(D)|3.
feF

6: OUTPUT: f, the estimate of the structural function.

very flexible machine learning function classes like tree ensembles to learn ¢, the two stages must

be fit in separate samples.

Not all ways of constructing the basis ¢ from the predictor g are equally good. For example, if
§(Z) is a sufficiently good predictor, then the 1-dimensional representation ¢(z) = §(z) would
satisfy the condition in Proposition 1. However, we will later show, empirically and theoretically,

that this basis is brittle and can lead to a poor estimate of the structural function.

Instead, we will exploit the fact that virtually all machine learning algorithms produce predictors
of the form §(Z) = ¢(Z)" 3 for some feature map ¢ that is learned from the data. For example,
with gradient-boosted trees, the prediction of the entire ensemble is a linear combination of the
output of individual trees. Thus, we could fit a predictor of Y given Z using a gradient-boosted
tree ensemble and then take ¢ to be the vector of outputs of each tree in the ensemble. This
representation satisfies the conditions of Proposition 1, and we will demonstrate that it works

well in practice. Similarly, for neural networks the natural choice of ¢ is the last-layer embedding.

We provide a step-by-step description of our procedure in Algorithm 1.
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3.1 A Brief Preview: The Importance of ML for the Reduced Form

On what kind of datasets are machine learning models necessary compared to nonparametric
sieve or kernel models? Recall that the assumption underlying methods that use sieve or kernels
bases for ¢(Z) — including Newey and Powell (2003); Singh et al. (2019); Chen et al. (2023) — is
that projecting onto this fixed ¢(Z) is sufficient to model E[f(D)|Z] for all f. In particular, because
E[fo(D)|Z] = E[Y|Z], this assumption implies that ridge regression of ¥ on ¢(Z) must be the
best out-of-sample predictor of Y given Z. If instead tree ensembles provide a significantly better
predictor of Y given Z, then this is direct evidence that using a sieve/kernel for ¢(7) is insufficient.
Sieve and kernel methods can be arbitrarily flexible asymptotically, and so this is primarily a finite-
sample phenomenon. Furthermore, tree ensembles excel at modeling discontinuities, whereas

sieve and kernel methods usually rely on smoothness.

In a brief preview of our empirical application, we now demonstrate that gradient-boosted tree
ensembles (GBoost) are a substantially better predictor for the reduced form in the demand dataset
from Compiani (2022) using NielsenlQ scanner data. This dataset has 38,800 observations, Y is
market-share for organic strawberries, and Z is 9-dimensional, with 5 instruments and 4 covari-
ates — we defer a complete description of the setting to Section 8. We compare the reduced form
MSE of GBoost to (1) ridge regression on the spline basis from Chen et al. (2023); and (2) ker-
nel ridge regression. All hyperparameters (such as the number of knots for the spline basis) are
selected by cross-validation. For each of these predictors, we test for a statistically-significant dif-
ference in out-of-sample mean-squared error vs GBoost using a one-sided permutation test. If this
permutation test rejects, this is evidence that the corresponding ¢(Z) does not sufficiently model

E[fo(D)|Z]. We summarize the results in Table 3.

The gradient-boosted tree ensemble is an enormously better predictor for the reduced form task
than splines or kernel ridge. This suggests that solving NPIV with a spline or kernel basis for
the instruments will be severely mis-specified, even if using a gradient-boosting or neural network
model for the structural function as in Chen et al. (2023). For comparison, we also include the MSE
of a neural network predictor. The neural network outperforms the sieve and kernel methods, but

still has a holdout R? that is 0.13 worse than that of GBoost.
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Table 3: Reduced Form Prediction Accuracy for Compiani (2022)

Predictor R2 MSE p for Hy = MSE < GBoost
Spline Ridge 0.413 0.570 0.0000
Kernel Ridge 0.559 0.428 0.0000
Neural Network  0.610 0.379 0.0000
GBoost 0.741 0.251 -

Notes: We report cross-validated R? and MSE. We test for a statistically-significant difference in MSE vs GBoost on
the cross-fit predictions using a permutation test with 10,000 permutations. The resulting p-value is an estimate,
and an upper 95% confidence interval on an estimated 0 with this many permutations is 0.00037.

4 Measuring the Out-of-Sample NPIV Estimation Error

Before introducing our theoretical results, we will now describe a feasible procedure for measuring
the out-of-sample NPIV estimation error on real data without needing access to the ground truth
structural function. This will allow us to directly compare different NPIV estimators on real-world
IV tasks including our demand estimation application in Section 8. Importantly, this also provides
a practical method for model selection — we can use a cross-validated version of our measure to
choose between NPIV models in applied work, including the selection of hyperparameters, which

is particularly important when using machine learning models.

41 The NPIV MSE
Recall that the structural function is the solution to the nested regression problem (4). For any
fixed f € F, a natural measure of how well we have estimated the structural function fj is:

NPIV-MSE(f) := E[(Y — E[f(D)|Z)])?.

We call this quantity the “NPIV MSE”, and define the “NPIV R?” analogously. Note that the
NPIV MSE is exactly equal to the “weak metric” error as analyzed in e.g. Newey and Powell

(2003); Dikkala et al. (2020):

~

E[(Y ~ E[f(D)|Z))*) = E | (D) - [(D)|Z])*].

As discussed in Section 2, minimizing NPIV-MSE( f) directly over f € F is challenging because for
each candidate f, we have to estimate E[f(D)|Z]. However, for any given candidate f, estimating

E[f(D)|Z] is straightforward: we just find the best predictor of of f(D) given Z.
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Given some NPIV estimate f, we estimate the out-of-sample NPIV-MSE in two steps:

Step 1: In a training sample, use machine learning to predict f(D) given Z. Denote the resulting
predictor E[f(D)|Z = 2.

Step 2: In a test sample — which must not have been used to fit f— compute the sample version

N

of NPIV-MSE( f) using the predictor from Step 1:

NPIV-MSE(f) := Z<Y —E[f(D)|Z = Z))* (11)

i=1
Because E[f(D)|Z] is a function of Z, the best possible value of NPIV-MSE( f) achievable by any f
is the MSE of E[Y'| Z]. Furthermore, because E[Y |Z] = E[fy(D)|Z], we know that this best possible
MSE is achieved by the true fy. This suggests a simple diagnostic. In the training sample from
Step 1, we can also use machine learning to find the best predictor of Y given Z, call it §(Z). For
a good estimate of the structural function, the value of NPmSE( f) in the test set should be

approximately equal to the MSE of §(Z) on the test set.

4.2 Model Selection in Practice

The out-of-sample NPIV error metric, NPmSE( f), gives us a simple way to perform model
selection in practice. Given several different estimates f, we can run the procedure above to esti-
mate the out-of-sample NPIV-MSE for each. The f with the smallest value best satisfies the NPTV
moment equation. Instead of splitting our data into one train and one test sample, we can also

perform a cross-validated version of this procedure, making better use of the available data.

We use this same criteria to select hyperparameters for Two-Stage Machine Learning. In Algo-
rithm 1, there are three sets of hyperparameters: the first stage function class G, the second stage
function class F, and the regularization hyperparameter . The NPIV-MSE provides a single met-

ric with which we can jointly tune these hyperparameters.

The cross-validated MSE of the best reduced form predictor forms a natural benchmark to target
in applied work. If we can achieve a cross-validated NPIV-MSE equal to the reduced form MSE,
then we know we have the best possible estimator of fj. If we do not achieve this benchmark, then
it is still possible to do better, and this can inform hyperparameter tuning. Therefore, our model
selection procedure has a clean separation of concerns into two parts: achieving the best possible

reduced form MSE, and then finding an estimate f with a matching NPIV-MSE.
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5 Theoretical Guarantees

In this section, I present theoretical guarantees for Two-Stage Machine Learning. First, I provide a
finite-sample error bound for the solution to the projected loss minimization problem Equation (7)
with any fixed basis ¢(Z). The resulting analysis applies to many existing estimators with different
choices of the basis ¢(Z) and the function class F: Sieve IV (Newey and Powell, 2003), Kernel IV
(Singh et al., 2019), Sieve Minimum Distance with machine learning (Chen and Ludvigson, 2009;
Chen et al., 2023), and Deep Feature IV (Xu et al., 2020). I then specialize the analysis to 2SML
where ¢(Z) is learned via the reduced form in a separate sample, and instantiate the rates using

known results for tree ensembles.

My main finding is that under a testable condition, the estimation error is equivalent to that of
ridge regression of Y on ¢(Z). I develop a feasible permutation test for this condition that serves
as a useful diagnostic. I show empirically across datasets that the testable condition holds for
many previous methods including Sieve IV and Kernel IV, and that it holds for Two-Stage Ma-
chine Learning when using gradient-boosted trees. I then validate the theory by showing that
the out-of-sample reduced form MSE for ridge regression using sieves, kernels, and the GBoost
basis predicts the subsequent out-of-sample NPIV estimation error. My analysis differs from pre-
vious results that depend on the statistical complexity of 7, and require uniform estimation of
the full conditional expectation operator, E[f(D)|Z],Vf. Notably, the typical approach requires
a smoothness assumption on the conditional expectation operator, whereas out gradient-boosted
tree approach can learn highly discontinuous functions — especially important in our demand

estimation example.

For my analysis, I will consider a more general loss function than the mean squared prediction
error. This additional generality will allow us to use the same algorithm and convergence guaran-
tee for both the structural function f, and for the debiasing nuisance that we will introduce later
in Section 6. In Section 5.1, I will introduce the general loss function. In Section 5.2, I formally
introduce the projected loss minimization problem with this general loss. In Section 5.3, I present
a finite-sample error bound on the weak metric for projected loss minimization under a fixed ¢.

In Section 5.4, I specialize the analysis to 2SML, where we use the reduced form to learn ¢.

Notation: Let Ly(D) denote the Hilbert space of functions f : D — R that are square integrable
with respect to the distribution of D, i.e. E[f(D)?] < oo. The inner product in Ls(D) is (f,g) =
E[f(D)g(D)], and we denote the usual Hilbert space norm | f||p := E[f(D)?]'/2. We use the same
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notation for Ly (7).

5.1 General Loss and Target Function

We will consider loss functions defined on functions g € Lo(Z). For g € Lo(Z),z € Z,y € Y, let
¢(g; z,y) € R denote the loss. Define the population risk:

L(g) = E[l(g; Z,Y)].

For g,¢' € Lo(Z), we will write DL(g)[¢'] for the directional derivative of the risk functional L at
g in the direction ¢':
d
DL N=—L tg' .
Dol = Llg+tg)| _

We impose the following assumptions on the population risk:

Assumption 1 (Requirements on the Risk). The population risk L(g) satisfies the following properties:

1. L(g) is A-smooth: for all g, ¢,
A
L(g) = L(g) = DL(g)lg = g1 < S llg - 7%
2. L(g) is B-strongly convex: forall g, ¢/,

L(g) — L(¢') — DL(¢')[g — ¢'] > gHg —dJlI%.

These are standard requirements needed to apply finite-sample empirical risk minimization bounds.

We now define the target estimand of interest (corresponding to the structural function in NPIV)
for this general loss function. Strong convexity and smoothness of the loss from Assumption 1

guarantee the existence of a unique minimizer of the population risk over Ly(Z), which we denote:

go = argmin L(g).
9€L2(2)

Define the conditional expectation operator 7 : La(D) — Lo(Z) with:
(TH)(2) = E[f(D)|Z = z].
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Then the target function fj is some function in Ly (D) that satisfies the conditional moment equa-
tion,

T fo = go-

While g is guaranteed to be unique, the target function f, need not be the only function in Ly(D)
that satisfies this equality.

Example (NPIV Structural Function). The NPIV structural function fo that satisfies E[fo(D)|Z] =
E[Y'|Z] is a special case for the loss function ls(g; z,y) = (y — g(2))* for g € Lo(Z) and corresponding
risk Lsq(g). We have E[Y | Z] is the minimizer of Ls,(g) over La(Z).

Example (Debiasing Nuisance). Let aq denote the Riesz representer of a linear functional 6. Then a
function qo that satisfies E[qo(Z)|D] = ao(D) is also a special case of this framework (with the roles of
Z and D reversed) for the loss function £y (c;d) = a(d)? — 2m(«a;d) for o € Lo(D). We discuss and

motivate this special case later in Section 6.

As these two loss functions are quadratic in their first argument, they both satisfy Assumption 1.
By encompassing both losses in a general framework, the rates of convergence we establish below

for 2SML will later allow us to establish asymptotic normality for linear functionals.

5.2 Projected Loss Minimization

We now generalize Equation (7) to the loss from the previous section with a function class F and
a fixed basis ¢(Z). We will provide a formal definition of the projected loss minimization problem
and resulting estimate. This section corresponds to what we call the “second stage” in Section 3.

Later in Section 5.4, we will use a “first stage” to learn the basis ¢(Z) from a separate sample.

Consider a sample with n iid observations of Z, D,Y. We will write E, [] to denote sample aver-

ages, and we will write the empirical risk: L, (g) = E,[((g; Z,Y)].
Our function class over which we solve the projected loss minimization problem is 7 C Ly(D).
Assumption 2 (Requirements on F). We require that:

1. (Conditions for Minimizers) F is non-empty, closed, and convex,

2. (Boundedness) sup e r || flloo < 1,

3. (Realizability) fo € F.

The first condition guarantees the existence of certain loss minimizers that will arise later. This

could be replaced with directly asserting the existence of relevant minimizers. The second condi-
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tion is used in the arguments for achieving fast rates with empirical risk minimization. Note that
without loss of generality, we can consider functions uniformly-bounded by a constant instead of
1, but we choose 1 for notational simplicity. We can relax the realizability condition, which will

introduce an additional approximation error term.

Next, we formally define the basis ¢(Z). To accommodate features ¢ that are potentially infinite-
dimensional, we use reproducing kernel Hilbert spaces (RKHS'’s) (Scholkopf and Smola, 2002).
For a symmetric, positive semi-definite (PSD) kernel £ defined on Z, let the corresponding RKHS
be denoted Hj. For any PSD kernel k£ and corresponding RKHS Hy, there exists a feature map
¢ : Z — Hj with the special property that for any g € Hy, g(2) = (¢(2),9). Conversely,
any feature map ¢ : Z — H, for any Hilbert space H, induces a corresponding PSD kernel
k(z,2") = (¢(2), p(2")) with corresponding RKHS, . This includes finite-dimensional ¢(Z), such

as a spline or polynomial sieve basis, as a special case.

Assumption 3 (L2(Z)-Boundedness). The kernel k satifies E[k(Z, Z)] < oc.

This condition guarantees that H; C Lo(Z) and it is quite weak. For all bounded kernels, it holds
automatically, and for most other kernels used in practice, this condition will hold as long as Z

does not have heavy tails.

Next, we formally define the projection part of the projected loss minimization framework. We

define the operator 7y : La(D) — Hy:

Tof = argmin{E[(f(D) — 9(2))*]},

gEH

i.e. Tyf is the projection in the Ly(Z) norm of E[f(D)|Z] onto H;. We also define the sample
version of this operator. Let || - |3, denote the usual Hilbert space norm for #j. Define the norm

ball of radius b, H? == {g € Hy : ||g]|s, < b}. Then define,

Tof = argmin{E,[(f(D) = 9(2))"]}. (12)

geEM,
In practice, instead of the constrained form with radius b, we implement the operator 7 using
the equivalent penalized form with hyperparameter A\. This has the advantage of being easily
computable in closed-form with the familiar projection matrix from Algorithm 1 (see Appendix A

for the closed-form solution in an infinite-dimensional RKHS).
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We impose the following requirements on the kernel £ and the norm radius b:

Assumption 4 (Regularity Conditions on H?). The kernel k and radius b satisfy the conditions:

1. The loss £(g; z,y) is C-Lipschitz on H?,

2. supgeqr [|9lloo <1,

3. The radius b is sufficiently large such that Ty fo € H2.

The first two requirements are standard boundedness assumptions required for our empirical risk
minimization results. They would be satisfied, for example, with ¢(g; z,y) = (g(z) — y)? when k
is continuous and Z is compact. The third condition is a realizability condition to streamline the

presentation of our main results — we discuss relaxing this assumption in Appendix C.4.

Estimate of the Target Function: To construct our estimate of the target function, we solve the

following empirical risk minimization problem in the sample of n observations:

f € argmin Ln(’fzbf) (13)
fer

5.3 Convergence in the Weak Metric

Following the previous NP1V literature as in Newey and Powell (2003) and Dikkala et al. (2020),
we first establish an error bound in the weak metric — || 7(f — fo)|| z — and then, when considering
asymptotic normality in Section 6.2, we will impose additional conditions to establish convergence

in the strong metric — || 7= follp-

We use nonasymptotic techniques to establish high-probability bounds on the error. The bounds
(and resulting rate of convergence) depend on the complexity of the function classes involved.
The measure of complexity we adopt is the critical radius, a standard tool from statistical learning
theory; see Wainwright (2019) and Foster and Syrgkanis (2023) for a review. Define the local

Rademacher complexity (Bartlett et al., 2005) for a function class A C L(Z), sample size n, and

|

where the expectation is taken over both independent Rademacher random variables ¢, ..., €,,

radius 6 > 0:

l Zeig(zi)

n
=1

Rn(A,6) =E sup

geA:|gllz<d

and over n iid observations of Z, 21, ..., z,,. The critical radius, d,, of the class A with sample size
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n is the smallest solution to the inequality:
—== <. (14)

We are now ready to state our main result. Let gj € Hy; be the best approximation of go in Hy, in
the Ly(Z)-projection sense.
Theorem 1 (Weak Metric Error Bound with General Loss and Fixed ¢). Let 6% be an upper bound on
the critical radius of 7—[2 Given Assumptions 1, 2, 3, and 4, with probability at least 1 — 2n we have:
. N log(1
IT(F— f)llz <0 (Hgo —gyllz+ 8+ Ay g”’”) ,

n

where:

Ay = L(Tf) = L(T4f).

We now comment on the three leading terms in the bound. The first two terms are the approxima-
tion error and sample complexity of loss minimization over an RKHS ball. When / is the squared
loss for predicting Y as in NP1V, this is identical to the typical error bound for ridge regression of
Y on ¢(Z). The third term Ay represents the difference (with respect to the loss L) between the

true conditional expectation 7" and our empirical projection Ty for the specific function f.

We now focus on the case A, < 0. When this holds, our estimation error and rate of convergence
for NPIV is no worse than standard ridge regression of Y on ¢(Z), up to constants. As we will dis-
cuss later, this is exactly the behavior we see in practice, and motivates our first stage of choosing
¢(Z) by using machine learning to predict Y given Z.

Assumption 5. Ay <0.

Crucially, Assumption 5 is testable from observables because f is known — this condition does not
depend on the true target function f;. We describe a feasible permutation test in Appendix C.5. A
sufficient (but not necessary) condition is that 7 fr To f, ie. ridge regression in ¢(Z) is the best

mean-squared predictor of f(D) given Z.

Using our permutation test, we find that Assumption 5 holds widely across datasets and methods.
This includes for Sieve IV and Kernel IV, which are special cases of projected loss minimization
when ¢ and F are described by sieve and RKHS bases. This also includes our 2SML procedure

when we fit the reduced form using gradient-boosted trees and take ¢ to be the output of each
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individual tree in the ensemble. For these methods, Assumption 5 holds both in all of our synthetic

datasets in Section 7, and in the real world datasets from Compiani (2022) and Card (1995).

However, we find that Assumption 5 fails to hold when ¢ is too simple relative to 7. For example,
if (in a separate sample) we fit a model §(Z) that predicts Y given Z and take the 1-dimensional
basis ¢(Z) = §(Z), we find that the condition is often violated. We also find violations of Assump-
tion 5, when ¢ is a sparse Lasso basis and the regularization hyperparameter is chosen to be too

high. We find that undersmoothing the Lasso prevents these violations in practice.

5.3.1 Comparison to Existing Theoretical Results

Many papers have previously analyzed estimators that solve (13) for special cases of F and ¢. We

now compare Theorem 1 to previous work.

Sieve IV (Newey and Powell, 2003), and Kernel IV (Singh et al., 2019) consider the case where
both ¢ and F are represented with fixed bases, and where the final estimate f permits a closed
form solution. Because we allow for an arbitrary machine learning function class F, our estimate
f does not have a closed form in general, and requires different analysis techniques. The most
closely-related paper to our setting is (Ai and Chen, 2003), which also uses essentially-arbitrary
machine learning methods for 7 — they use the terminology “nonlinear sieves”. Their approach
is to use uniform concentration arguments over F via the metric entropy, as in Van Der Vaart and
Wellner (1996). Xu et al. (2020) analyses a similar setting — no closed-form solution, and nonlinear
sieve for 7 — using (non-local) Rademacher complexity results. As a result, they generally do
not achieve a fast enough rate to achieve asymptotic normality for linear functional estimands.
Because of their iterative procedure, in Xu et al. (2020), the basis ¢ is chosen adaptively from the

data, although they do not consider convergence in their analysis.

The papers above all use two parts in bounding the estimation error: first, they bound the es-
timation error of the conditional expectation operator 7 using the basis ¢ (typically requiring
smoothness); and second, they control the estimation error for loss minimization over the funtion

class F.

Our analysis differs in two main way from the results above. First, notice that our error bound
does not depend on the complexity of . This is what we would expect intuitively when looking
at the projected loss minimization problem. In (7), the optimization problem ultimately predicts Y’

as a linear function ¢(Z). The optimization over f € F simply selects between different functions
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of ¢(Z). Therefore, we would expect the variance term in our analysis (represented by function
class complexities in statistical learning) to depend on the complexity of ¢(Z), not F. This is
exactly what we see in Theorem 1. Instead, the complexity of F serves as a constraint on the
relative complexity of ¢(Z) through Assumption 5. If F is very complex, such as to secure f; € F,
then ¢(Z) cannot be too simple — for example, as when choosing the simple 1d prediction basis

#(Z) = g(Z) leads to violations of Assumption 5.

The second main difference is that we do not require that ¢ well-approximates the conditional
expectations E[f(D)|Z] for all f. Such a requirement typically means that the conditional expecta-
tion operator must be smooth. Otherwise, it is unreasonble to assume that a single ¢ can uniformly
approximate the conditional expectation for all f. Our insight in Theorem 1 is that we only require
this condition on the single function f, which is observed. In 2SML, our gboost tree basis for ¢
satisfies this condition on f for every data set that we have tested. Notably, we can demonstrate
that there exist other f besides f for which this condition does not hold with our gboost tree ba-
sis ¢ — but those do not impact our estimation error for fy. Thus we can pick a ¢ that focuses
on predicting Y given Z without having to worry about extraneous functions f. In future work,
it would be interesting to analyze the gboost tree basis theoretically, for example within a local

neighborhood of fy, to explain this observed behavior.

This second difference is especially important in comparison to the estimator in Xu et al. (2020),
where the difficulty of estimating the conditional expectation uniformly means that they have to
treat the treatment D and the covariates X separately, restricting heterogeneity. 2SML by contrast

works well even with high-dimensional X, without any additional restrictions. See Appendix F.

5.3.2 An Illustrative Validation of the Theory

Theorem 1 suggests that when Assumption 5 holds, the out-of-sample MSE for ridge regression
of Y given ¢(Z) should predict (up to constants) the out-of-sample NPIV MSE for projected loss
minimization with that ¢. We now validate this implication of our theory on our demand estima-
tion application using Nielsen scanner data. Sieve IV, Kernel IV, and GBoost 2SML (which uses
the gboost tree basis to construct ¢(7)) all satisfy Assumption 5 on this dataset. In Table 4, we

demonstrate that the NPIV MSE tracks the Ridge MSE exactly as suggested by the theory.
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Table 4: Comparing Ridge MSE and NPIV MSE on Compiani (2022)

»(2) Ridge MSE NPIV MSE
Spline Basis 0.570 0.522
RKHS Basis 0.428 0.494
GBoost Basis 0.248 0.274

Notes: All results are averaged over test folds with cross-fitting. “Ridge MSE” is the mean squared error of Ridge
regression of Y on ¢(Z). “NPIV MSE” is the value of (11) for the corresponding NPIV estimator; Sieve IV, Kernel
IV, and GBoost 25ML. Note that the GBoost basis is constructed by predicting Y given Z, but only within the
training set (so there is no data leakage from train to test sets).

5.4 Learning ¢ with the Reduced Form

The analysis above suggests that we should select ¢ such that ridge regression on ¢(Z) is the best
predictor of Y (as long as ¢ satisfies Assumption 5). This motivates the first stage of Two-Stage
Machine Learning that learns ¢ by predicting Y given Z, achieving the excellent practical perfor-
mance documented in Table 4, and which we now formally describe for the general loss function
L(g). We will then instantiate the first and second stage function classes with tree ensembles to

give an example of a concrete rate of convergence for 2SML.

We define the first stage function class G C Ly(Z), with the following requirement:

Assumption 6 (First Stage Function Class).

g C U Hy.

k:E[k(Z,Z)] <00

Note that this restriction is extremely weak; for example, U}z 7)) <00 Hr contains all continuous

J<oo
functions (and many discontinuous ones). An important special case that subsumes most machine
learning algorithms is when G is defined over finite-dimensional kernels of a fixed dimension:

Proposition 2. Fix 1 < d4 < oco. Then,

{9(2) =¢(2) B st 6: 2 5 R% E[|@(2)|3] <oo, eR¥}C ) Ha
k:E[k(Z,Z)]<o0

Proof. For each ¢, we can define the kernel k(z,y) = ¢(z) " ¢(y). Then apply Cauchy-Schwarz. [

As concrete examples, this finite-dimensional case would include any neural network with em-
bedding width d, and bounded weights, or any gradient boosting ensemble composed of d indi-
vidual bounded boosters. These examples cannot be written as a single RKHS because they choose

their basis ¢ adaptively from the data. Our general formulation for G also allows using an infinite-
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dimensional RKHS in the first stage (as in Singh et al. (2019)), or performing a kernel-learning step

to adaptively choose between infinite-dimensional RKHS’s (Lanckriet et al., 2004).

As for F in Assumption 2, we need some standard regularity assumptions on G:

Assumption 7 (Requirements on G). We require that:
1. (Conditions for Minimizers) G is non-empty, closed, and convex,
2. (Lipschitz) £(g; z,y) is C-Lipschitz with respect to its first argument over g € G,
3. (Boundedness) sup e [|gllco < 1.
As above, we can consider functions uniformly-bounded by a constant instead of 1.

Consider a sample of m iid observations from Z, D, Y that is disjoint from the n observations used
for projected loss minimization. We write [,,[-] for sample averages and L,,(g) for the empirical

risk as before. The first stage of 2SML solves the following empirical risk minimization problem:

g € argmin L,,(g).
9g€g

By construction, there exists a PSD kernel k with E[k(Z, Z)] < oo, and a corresponding RKHS
H; such that g € H;. Let :Z = H;, be the corresponding feature map. The second stage of
25ML then solves the projected loss minimization problem from Section 5.2 in the sample of n

observations, but using the features (ﬁ and kernel k:

stml € argmin L, (7;f) (15)
feF

Proposition 3 (Weak Metric Error Bound for 2SML). Given Assumptions 2, 6, and 7, and given that
Assumption 4 holds for k, and that Assumption 5 holds for frey, with probability 1 — 21 we have:

1T (Fasmi = fo)llz <O <||gO —gllz+ 8+ bg(;/”)) .

Therefore, the estimation error of 2SML depends on the estimation error of the first stage loss
minimization task, plus the complexity of ridge regression on ¢(Z). We now provide examples of
convergence rates for these two terms. The reduced form error ||go — §||z can be controlled using
any off-the-shelf machine learning result that provides a rate of convergence. This includes results

giving rates without the critical radius machinery — for a recent example using boosting see Luo
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et al. (2025). Note that since we estimate g using the first sample, the rate of convergence depends
on m. Very often these rates take the form O (d bﬁj”) , where d is some measure of the effective

dimension of the machine learning algorithm.

For completeness, we provide a standard critical radius bound for the first stage. Define the star
hull of a set A as star(.A) := {ag|lg € A, a € [0,1]}.

Proposition 4 (First Stage). Let 09, be an upper bound on the critical radius of star(G — g*). Given
Assumptions 1 and 7, with probability at least 1 — n:

1og<1/n>) |

19— gollz <O (min”g —gollz + 0% +
9€§g

The second term in Theorem 1, (52 is the critical radius of the Hilbert space ball HZ Critical radii
for different kernels have been extensively characterized, see for example Bartlett et al. (2005);
Wainwright (2019). Note that k is chosen through the first stage, and so 6 depends on G. We now

provide a specific example of G with rates of convergence for the first two terms in Proposition 3.

Example (Tree Ensembles): Let G be the set of all tree ensembles composed of a convex combi-
nation of 7" individual trees. Suppose we can achieve zero approximation error, i.e. mingeg ||g —
9llz = 0. Any g € G can be written as a linear function of T trees, satisfying the conditions
in Proposition 2 with dy = T'. For concreteness, we could apply the result from Syrgkanis and

Zampetakis (2020) for individual trees with ¢ leaves and d binary input features to get:

57gn <0 (\/Ttlog(dt) log(m)>'

m

This is a typical result for the complexity of trees — compare to Theorem 1 from Li et al. (2024).

Next, the set HZ is a subset of all linear functions of the features & with dimension 7, and so using

standard results (Wainwright, 2019), we can take:

55;3\/?.
n

> Alternatively, we could let the approximation error shrink with 7', and select T to balance bias and variance as in
Syrgkanis and Zampetakis (2020).
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Putting these together with Assumption 5, we get:

T'tlog(dt) log(m) T)

HTO?Zsml - fO)”Z < Op (\/ + _

The rate is dominated by the first term, the complexity of the reduced form prediction task. If we
begin with N total samples split evenly, then foqm converges at rate \/log(N)/N, which impor-

tantly is fast enough to satisfy the rate requirements for valid inference in the next section.

6 Standard Errors for Linear Functionals with Debiasing

Often, we are interested in a scalar summary of the structural function fj such as an average price
elasticity or marginal propensity to consume. We now consider estimation and inference for linear
functionals of fy. Let 6 be a continuous linear functional over f € Lo(D) that, for some m, takes

the form:

0(f) = E[m(f, D)].

We consider the target estimand 6y = 6( fo).
Example (Impulse Response). Consider a setting with fo(D, X) where D € R. Then,

0(fo) = E[fo(D +1,X) — fo(D, X)]

is the average impulse response for the structural function.

Example (Own- and Cross-Price Elasticities). Consider a demand estimation setting with two goods
where Y is the log market share for good 1. Let the structural (demand) function be fo(D1, D2, X), where
Dy is the log price of good 1, D is the log price of good 2, and X are exogenous market characteristics.
Then:

_[0fo(Dy, Dy, X) _[8fo(Dy, Dy, X)
90(f0)—E[ oD } 7 9c(fo)—E[ 9D, ]

are the own-price and cross-price elasticities respectively.

The simple plug-in estimator for 6y using the output of Algorithm 1 is:



However, even if the estimator of f is consistent for f, machine learning estimators usually lever-
age bias in order to reduce variance. This may be optimal for uniformly estimating fy, but the
bias will pass through to the plug-in estimate. As a result, p will generally not be asymptotically

normal, and it is unclear how to obtain valid confidence intervals.

6.1 Debiasing Procedure

We now provide a debiasing procedure that corrects for the bias when estimating 6, resulting
in an asymptotically normal estimator. Our approach is based on the debiasing framework of
Chernozhukov et al. (2023). If f, were a conditional mean instead of the solution to the NPIV
conditional moment equation, then we would have a standard double/debiased machine learning
problem (Chernozhukov et al., 2018). In that standard setting, debiasing involves estimating a
nuisance function called the Riesz representer of the functional §.° When 0 is linear and continuous,

there exists a unique function oy € Lo(D) called the Riesz representer such that:
0(f) = Elao(D)f(D)], Vf € La(D).
We can estimate o by minimizing the Riesz loss as in Chernozhukov et al. (2022b, 2021, 2022a):

ap = argmin E[(a(D) — ag(D))?] = argmin E[a(D)? — 2m(a; D)]. (16)
a€La(D) a€La(D)

Riesz loss

Remarkably, even though « is unknown, minimizing the average (observable) Riesz loss is equiv-

alent to minimizing the average squared error for ay.”

In the NPIV setting, where fj is defined by a conditional moment equality, o is no longer the
relevant debiasing nuisance. Instead, Severini and Tripathi (2012) show that 0( f) is identified if
and only if there exists a gy € Ly(Z) such that E[go(Z)|D] = ao(D).® Given estimates f for fy and
g for qo, the resulting debiased NPIV estimator from Chernozhukov et al. (2023) is:

I = = >" m(f: D) +d(Z)(Y; — (D). 17)
=1

All that remains is to obtain an estimate ¢ of the debiasing nuisance. Since E[qy(Z)|D] = ao(D)

SFor earlier uses of the Riesz representer for semiparametric estimation in NPIV, see Ai and Chen (2003); Chen et al.
(2006); Ai and Chen (2007).

’Chen et al. (2014); Chen and Pouzo (2015) also estimate the Riesz representer directly with least squares.

8See Ai and Chen (2012) for a related derivation of the efficient score.
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is also a conditional moment equation, we can use a Two-Stage Machine Learning procedure,
just as we used to estimate f. Recall that the structural function fy is defined by the squared
loss minimization problem in Equation (4), which given a learned representation ¢, we replaced
with the projected loss minimization problem Equation (5). A similar argument holds for ¢o, but
applied to the Riesz loss (16) instead of the squared loss, and with the roles of D and Z reversed.
This idea — that the same strategy can be used to estimate both f and § — is not new, and was
applied to minimax estimators in Ghassami et al. (2022); Bennett et al. (2022). Our procedure for

estimating ¢ works as follows:

Stage 1 (Riesz Regression): Fit a machine learning model & (D), that minimizes the Riesz loss (16).

Extract a feature representation (D) from this predictor such that &(D) = (D) ' 3.

Stage 2 (Projected Loss Minimization): Minimize the projected Riesz loss using the learned fea-

tures ¢ from Stage 1 to get an estimate g.

This procedure is a special case of 2SML with the general loss function described in Section 5.1,

and so the theoretical guarantees from Theorem 1 also apply to ¢.

The projected Riesz loss minimization problem in the sample takes a convenient form by exploit-
ing linearity — we defer the derivation to Appendix B. Let p € R™ % be the matrix with rows
¢(D;), and let s € R™*%, be the matrix with rows equal to m(i, D;). Let ¢ € R% be the sample

average of ¢¢. Define:

P, =p(p o+ A", Pygi=gg(p o+ ADp'.

To shorten notation, we write ¢ for the vector with entries ¢(Z;). Then the second stage optimiza-

tion problem is:

1
min {qTPSDq — 2Pch} . (18)
qeQ (N

In the next section, we will establish conditions that guarantee that the debiased estimate 0 is
asymptotically normal. Valid confidence intervals can be computed with standard error 6/+/n,

where

o = L5 (m(f: D)+ Z)Y; ~ F(D2) ) 19)
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Note that both §p and 42 should be estimated using cross-fitting as in Chernozhukov et al. (2023),
but we suppress cross-fitting in the main text for notational convenience. We describe how to

compute the cross-fit estimate in Appendix D.

6.2 Conditions for Asymptotic Normality

Let f and § be estimates that solve the 2SML second-stage optimization problem as in (15) for the
squared loss /sq and the Riesz loss /;; respectively. For f let the first stage function class be Gq, the
second stage function class be Fq, the learned features be ¢ and the norm ball in the corresponding
RKHS be 7—[?;. For ¢, define G, Fir, ¢, and ng analogously. Assume that the corresponding
Assumptions from Proposition 3 hold. Applying Proposition 3 to the two nuisance estimates f
and ¢, we can establish asymptotic normality and valid inference for the debiased point estimate

(17). In what follows we will write Tp_,z(f) for E[f(D)|Z] and Tz_.p(q) for Elg(Z)|D].

Consider the debiased point estimate 0p from (17) and variance 62 from (19) formed using the
two nuisance estimates f and §. Chernozhukov et al. (2023) show, under standard regularity
conditions (i.e. boundedness of certain moments, described in Appendix C.6), that if the following

rate conditions hold:

L If = follp = op(1),

2. [1g = qollz = 0p(1),

3. min( [Tp-z(f = fo)llzId — qollz » IIf = follolI Tz—p(G — o)l ) = 0p(n~13),
then we have asymptotic normality:

V(b —00) & N(0,02), and 6% B o2,

where o2 is the variance of the efficient influence function. Therefore, for a € [0, 1], we get a valid
confidence interval:

P{f € 0 % coon/?} -1 —a,

where ¢, is the (1 — a/2)-quantile of the standard normal distribution. Condition 3 is the usual
product rate requirement, but allowing a mix of convergence in the strong metric and the projected
weak metric. We rely on existing results to relate the weak metric, || Tp_, z(f — fo)||z to the strong

metric || f — fo||p and similarly for §. Chen and Pouzo (2012) introduce the measure of ill-posedness
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with respect to the function class F:

= sup If = follp
rer [ To=z(f — fo)llz

If 7 is bounded, the error in the strong metric is controlled by:

If = follp < 7| Tos2(f — fo)lz-

Other work use different techniques to secure convergence in the strong metric, like combining
Tikhonov regularization and a source condition assumption Bennett et al. (2023); Li et al. (2024). A
similar analysis could be applied here, but we use bounded measure of ill-posedness for simplicity.
Proposition 5. The following conditions on f and G are sufficient for the rate conditions from Cher-

nozhukov et al. (2023) to hold:

1. Either fo or qo has bounded measure of ill-posedness, i.e.

I.f = follp la — qollz
sup

min [ sup ) <7 < o0
(fe]—'sq | To~2z(f — foll z” 4eF, | Tz—D(q - QO)HD)

2. If one of fo or qo does not have a bounded measure of ill-posedness, the corresponding nuisance

estimate must still converge in the strong metric but possibly at an arbitrarily slow rate;

3. The function classes Gsg, Grr, Hgl, MY satisfy the product rate condition,
max{d%, ||§ — gol z} - max{d%2, |& — ag|p} = 0p(n~'/?).

Proof. By applying Theorem 1we get |-,z (f— fo)llz = Op(6%+[l3—gollz-+n~1/2) and | T p(d—
0)|lp = 0p(8%2 + ||& — ag || p + n~'/?). If either has bounded measure of ill-posedness, then either
If = follp or |G — qol|z inherits the same rate, so we satisfy Condition 3. If the other does not
satisfy any bounded measure of ill-posedness, then we still require that the nuisance converge in
the strong metric, but possibly at a much slower rate than the weak metric convergence provided

by Theorem 1. O

Remark 1. The conditions in Proposition 5 are sufficient but not necessary to achieve the product rate
requirement. For example, consider a setting where Theorem 1 would guarantee that both nuisances achieve
a typical convergence rate of \/logn/n in the weak metric, but that in the strong metric, that rate falls to

n~/5. The rate conditions for asymptotic normality are still satisfied. This is similar to the inference results
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for sieves under ill-posedness in Chen and Pouzo (2015).

Remark 2. The inference guarantees in Bennett et al. (2022) don’t require any kind of ill-posedness con-
trol, however, they require a stronger identification condition on 0( fy) than the existence of qo such that
Elqo(Z)|D] = ao(D). In their setup, they minimize the Riesz loss, but using a slightly different projection
scheme, which they solve using a minimax formulation. In future work, a straightforward extension would

be to solve for their proposed debiasing nuisance using our algorithm.

7 Evaluation in Simulation

We evaluate our 2SML procedure in three ways. First, we can directly assess how well we min-
imize the NPIV objective (4) out-of-sample using real data from IV applications as discussed in
Section 4. This doesn’t require access to the true structural function. We defer this evaluation to

our empirical application in Section 8.

In this section, we use synthetic and semi-synthetic data to evaluate 2SML in two ways that do
require ground-truth access to the true structural function. First, we use a semi-synthetic setup
to evaluate how well our estimate of the structural function f uniformly approximates the true
structural functional using the metric || f — fo||p. This is a goal unto itself if we care about accu-
rately capturing the heterogeneity in fj, or counterfactual prediction. The mean squared error for
estimating fo also translates directly into the size of the confidence interval for linear functional
estimands. We show that 2SML with gradient boosted trees achieves out-of-sample R? improve-

ments of around 0.1 and 0.15 in two novel IV benchmarks based on real-world datasets.

Second, we perform a coverage simulation for inference on the average derivative of f;. Here we
use a non-linear synthetic setup but with parameterizable dependence between the treatment and
covariates that controls whether the parameter of interest is well-identified. In the well-identified
case, our debiasing procedure improves coverage from 69.6% (without debiasing) to 94.4%. In a
very poorly-identified setting, our debiased confidence interval undercovers slightly at 88.4%, as
expected theoretically (Dorn, 2025), but this is an enormous improvement over the 3.6% coverage

without debiasing.

7.1 Semi-Synthetic Evaluation of the Structural Function Estimate

NPIV methods are often benchmarked on purely synthetic data. These are typically low-dimensional,

and use hand-designed functional forms with limited heterogeneity — see for example the commonly-
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used conference demand problem from Hartford et al. (2017). In these simple settings, there is
often no advantage to using a complex model like gradient boosted tree ensembles compared to
a sieve or kernel ridge model; the strength of tree ensembles lies in their excellent predictive per-
formance on complicated real-world datasets. A few papers use high-dimensional designs with
images as treatment (Bennett et al., 2019; Dikkala et al., 2020; Xu et al., 2020), but these designs are

not representative of typical economics data in IV applications.

We design two semi-synthetic benchmarks using real data on taxi fares and house prices from
Grinsztajn et al. (2022). These are so-called “tabular” datasets (where each observation has a mix
of numerical and categorical attributes) typical of economics applications. Our basic approach
is to take an existing prediction task, and split it into a training sample and an test sample. We
choose one highly predictive attribute as the endogenous variable (“the treatment”), and then add
correlated noise to both that variable and outcome in the training sample. Transformations of
the original “treatment” variable (before the noise is added) serve as valid instruments. In this
way, we can make sure that the assumptions underlying NPIV are met, without having to spec-
ify the relationship between treatment, covariates and outcomes. In practice, these relationships
feature complicated heterogeneity that requires machine learning methods to model sufficiently.
Our benchmark task is to fit an IV model in the endogenous training sample and predict on the
unconfounded test sample — the prediction squared error on the test sample is equal to the Lo
error for the structural function up to a constant. We describe how we construct the benchmarks

in Appendix E.1. We provide a brief summary of our two settings in Table 5.

We compare 2SML using gradient-boosted trees in the first and second stages (GBoost 2SML)
against several baselines: a naive ML estimator ignoring the instrument; classic linear two-stage
least squares; Kernel IV from Singh et al. (2019); Ensemble IV, a minimax method proposed in
Dikkala et al. (2020) using random forests; and an oracle estimator that gets direct access to the
unconfounded outcomes. The results are summarized in Table 6. Gboost 2SML substantially out-
performs the other methods. Notice that the performance of the minimax random forest method

EnsemblelV is unstable, collapsing in the Census Housing task.

Table 5: Dataset Characteristics

Dataset Train Samples Test Samples Outcome Variable # of Features
NYC Green Cab 406,600 174,258 Log Taxi Fare 16
Census Housing 15,948 6,836 Log Median House Price 16
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Table 6: Out-of-Sample R>

Dataset Naive MLL 2SLS KernelIV Ensemble IV GBoost 2SML Oracle
NYC Green Cab -0.07 0.53 0.52 0.57 0.72 0.86
Census Housing 0.14 0.18 0.43 -0.01 0.53 0.80

Notes: Each estimator is fit in the training sample, and R* values are computed in the hold-out sample. Naive ML
is a GBoost model fit ignoring endogeneity. The Oracle estimator is GBoost model fit with endogeneity removed,
representing an upper bound on predictive performance of any IV estimator.

7.2 Simulation Results for Coverage

We perform purely-synthetic Monte Carlo simulations to assess coverage of our asymptotic nor-
mal confidence intervals using 2SML with and without debiasing. Our results demonstrate that
plug-in IV models without bias correction can dramatically undercover, whereas our debiasing
procedure recovers correct coverage. We design an average derivative estimation task with an
endogenous non-linear outcome and with non-linear dependence between the treatment, instru-
ment, and covariates. The strength of the dependence between treatment and covariates induces
a non-parametric form of multi-collinearity, allowing us to vary the degree of identification for the
average derivative parameter (similar to controlling overlap for the average treatment effect). We

describe our data-generating process in Appendix E.2.

We run Monte Carlo simulations with n = 2000 repeated for 250 trials. We focus on two set-
tings: (1) a setting with moderate dependence between treatment and covariates resulting in a
challenging but well-identified estimation task, and (2) a setting with strong dependence between
treatment and covariates such that the average derivative is very poorly-identified. This poorly-
identified setting is intended to be a particularly challenging case where even a debiased estimator
should fail to achieve perfect coverage — see Kang and Schafer (2007); Dorn (2025) and similar.
We provide point estimates and 95% confidence intervals for two estimators: a 2SML model with-
out debiasing; and a debiased estimate where both nuisances are fit with 2SML. We summarize

the results in Table 7.

In the well-identified setting, the 2SML plug-in (without debiasing) significantly undercovers,
with only 70% of the confidence intervals containing the true parameter. The debiased 2SML esti-
mate restores correct coverage while simultaneously achieving a small improvement in RMSE for
the target estimand. In the poorly-identified setting, the coverage of the 2SML plug-in collapses to
3.6%, while the debiased estimator achieves coverage of 88.4%, even in this especially challenging

case. Note that here the RMSE for the plug-in and debiased estimates are roughly the same; the
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improved coverage for Debiased 25ML is achieved through a nearly 4x increase in the standard

error, more accurately reflecting the true amount of uncertainty.

Table 7: Monte Carlo Results for Average Derivative Estimation Task

Method Well-Identified Setting Poorly-Identified Setting

Bias Std. Err.  RMSE Coverage | Bias Std. Err  RMSE Coverage

Plug-in 2SML | -0.029  0.024 0.044 0.696 -0.094  0.022 0.098 0.036
Debiased 2SML | -0.010  0.036 0.038 0.944 -0.056  0.079 0.101 0.884

Notes: Metrics averaged over 250 trials with n = 2000. Coverage is for the 95% confidence interval. Dependence
between treatments and covariates generates a non-linear form of multicollinearity. In the “Well-Identified Set-
ting”, this dependence is moderate, and in the “Poorly-Identified Setting”, this dependence is strong.

8 Empirical Application: Demand Estimation

We now present an empirical application to demand estimation using the California supermarket
data from Compiani (2022), where consumers choose between organic strawberries, non-organic
strawberries, and an outside option (other fresh fruits). A key characteristic of this dataset is
bunching at 9-ending price points, as illustrated in Figure 1. We have 38,000 observations for
organic strawberries, averaged over products at the store-week level. Of these observations, 15,678
have average prices ending in 0.99, and 8,579 have an average price of exactly $4.99 per pound. We
will demonstrate that our non-parametric approach using tree ensembles is especially valuable
in this setting, achieving a nearly 8x reduction in NPIV estimation error compared to the best
prior method. Our model captures strong discontinuities at the dollar boundary, resulting in
an estimated price elasticity of -13, between 2.5-6x larger than the estimates previously reported
in Compiani (2022) and Chen et al. (2023) using the same dataset. The tendency of prices to
bunch at 9-endings is widely-documented, so while our application is to strawberry demand, the

takeaways should be more broadly applicable.

We use our debiased 25ML procedure to estimate the price elasticity of demand for organic straw-
berries by estimating the average derivative following the specification in Chen et al. (2023). All
observations are at the store-week level. Y € R is the log market share for organic strawberries,
D € R? are the log prices for organic and non-organic strawberries, and X € R? are covariates
including: income, taste for organic products,’ state-level sales of other fruit, and average price of
other fruit. The instruments Z € R’ include 3 Hausman IVs (average prices at stores not in the

same marketing area), and spot prices for organic and non-organic strawberries. See the online

9The percentage of total yearly sales of lettuce that are organic at the store.
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Figure 1: Counts of Average Price Per Pound for Organic Strawberries

Notes: Observations are averages over products at the store-week level.

Appendix of Compiani (2022) for a complete description of the construction of the dataset. The
own-price elasticity of organic strawberries is E[0 fo(D1, D2, X)/0D].

Note that our primary goal is to match the setup of Chen et al. (2023) as closely as possibly, in order
to directly compare the results for identical estimands. However, we recognize there are potential
limitations of this setup from an applied point of view. For example, we require endogeneity to
enter additively, which may be inconsistent with theoretical microfoundations (Berry and Haile,
2016), and we use Hausman instruments, which place strong independence assumptions on un-
observables across markets. We leave further exploration of demand estimation in particular to
future work. Finally, Chen et al. (2023) use a differentiable model and compute the derivative an-
alytically. By contrast, our best fitting model using GBoost has strong discontinuities at the dollar
boundary. Furthermore, the price distribution itself is partly discrete — most prices per pound are
in round cents, like $4.96.19 Therefore, we calculate the derivative with symmetric differencing;:
E[(fo(D1 + €,D2,X) — fo(D1 — €, D2, X))/2¢] with ¢ = 0.01 (large enough to be at least 1 cent
for all observations). If we believe the true demand function is discontinuous, then this e-shock
response could itself be considered a valid estimand. We consider alternative specifications in the

Appendix.

8.1 Out-of-Sample NPIV Estimation Error for GBoost 2SML vs Previous Methods

Two-Stage Machine Learning with tree ensembles provides a substantially better estimate of the
structural function than existing methods. We demonstrate this using the out-of-sample measure

of the NPIV estimation error introduced in Section 4. We perform this procedure with 4-fold

10Although some are not, like $3.011424.
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cross-fitting on our dataset for organic strawberries. In each training fold, we compute estimates
f for a variety of NPIV estimators including our 2SML method with GBoost. We compare our
method against 2SLS, Sieve IV and Kernel IV, which are linear in a fixed feature transformation;
Deep 1V, which solves a conditional density estimation problem in the first stage; Deep Feature
IV, an iterative method using deep neural networks;the spline minimium distance method from
Chen et al. (2023), using a gradient-boosted tree ensemble to represent fjy; and Ensemble IV, an
adversarial/minimax method using tree ensembles. For each f, we estimate the corresponding
E[f(D)|Z] using machine learning (picking the best model by cross-validation within the training
fold).!! In the test fold, we then compute the estimated NPIV MSE for f asin Equation (11). We

show the corresponding R? values averaged across the four folds in Table 1.

The key measure of success is the rightmost column, which compares the NPIV R? to the best
achievable value — the reduced form R? of 0.741. The true structural functional would achieve
a difference vs the reduced form of approximately zero. Our GBoost 2SML estimator achieves a
nearly eight-fold reduction in R? vs E[Y'|Z] compared to the next best method, the GBoost/Spline
estimator following Chen et al. (2023). This corroborates our finding in Table 3 that a spline basis
cannot sufficiently model E[fy(D)|Z] in this dataset. The minimax estimator, Ensemble IV, from
Dikkala et al. (2020) also has over 9x the estimation error of our approach. Note that even though
Ensemble IV uses tree ensembles for both the structural function and the instruments, it does not
perform as well as the simpler two-stage GBoost/Spline approach, highlighting the limitations of
adversarial approaches. Chen et al. (2023) report a similar finding. The remaining methods that do
not use tree ensembles perform even worse. Sieve and Kernel IV have over 10x higher estimation
error than our method. Notably, the neural network-based approaches Deep IV and Deep Feature

IV perform particularly poorly.

8.2 GBoost 2SML Estimates a Much Higher Price Elasticity

Our debiased point estimate for the average price elasticity is —13.23. This is roughly 2.5x larger
than the elasticity estimate of —5.5 reported in Compiani (2022), and 4-6x larger than the elastic-
ity estimates in Chen et al. (2023), which range from —2.2 to —3.4. In Table 8, we compare our
debiased estimate with the plug-in estimates from the models in Table 1. Note that for smooth

methods — like 2SLS, Sieve IV, and Kernel IV — the estimate of the price elasticity is around —2 to

If f was fit with Kernel IV for example, the model for E[f(D)| Z] selected via cross-validation need not be a kernel
ridge model. Indeed, we find for f fit using Sieve IV and Kernel IV, the best predictor for f(D) given Z in our demand
dataset is a tree ensemble. This again emphasizes that the sieve/kernel bases are misspecified.
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Table 8: Estimated Own-Price Elasticities for Organic Strawberries

Estimator Price Elasticity Debiased Price Elasticity
Boost 2SML -11. -13.2
Our method GBoost 25 65 ( 1:.38 2?

2SLS -2.28
Sieve IV -2.55
Without trees | Kernel IV -3.25
Deep IV -1.10
Deep Feature IV -1.68
. GBoost/Spline -9.55
With trees Ensemble IV -9.58

Notes: Estimates are average price elasticities using 4-fold cross-fitting. The top of the table contains
our main estimate with debiased standard errors clustered at the store level. The bottom of the table
includes plug-in estimates across other NPIV methods.

—3. By contrast, the price elasticities estimated using tree ensembles are substantially higher. The
GBoost/Spline and Ensemble IV estimates are around —9.5: higher than the smooth estimates,
but still smaller than our point estimate of —13.23, and falling below our 95% confidence interval.
Note that the neural network approaches (which perform particularly poorly in Table 1) estimate

an elasticity as low as —1.1.

We find that our point estimate is mainly driven by discontinuities at the dollar boundary, which
gradient-boosted tree ensembles excel at modeling. In Figure 2, we plot how our 25ML estimate
of the price elasticity varies with own-price. We find large negative price elasticities at 99-endings.
For example, 22% of all our observations have a price of exactly $4.99. Among just these obser-
vations, our estimated price elasticity is around —30. This estimate is inline with existing studies
on 99-ending prices. For example, Schindler and Kibarian (1996) find at a clothing retailer that 99-
ending prices had 8% more sales volume than 00-ending prices. To compare magnitudes, note that
at $4.99, a change to $5.00 is a 0.2% difference. Thus an 8% change in demand would correspond
to a price elasticity of —8/0.2 = —40.

Notice that in Figure 2 there is consistently a positive price elasticity leading up to the 99-endings.
We estimate that changing prices from $3.75 to $3.99 actually increases demand. This corrobo-
rates the finding in Snir and Levy (2021) that shoppers perceive 9-ending prices as being lower
than non-9-ending prices, even though this is not actually the case on average. This could be ev-
idence for violations of profit maximization, but there are alternative explanations. For example,
99-endings may signal lower quality, there may be regulatory restrictions, or there may exist unob-

served confounders that violate the spacial independence assumption for Hausman instruments.
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Figure 2: Own-Price Elasticity for Organic Strawberries

Notes: Average price elasticities within own-price bins for the structural function estimated using two stage
machine learning with gradient-boosted trees. Bin size was chosen relative to e = 0.01 used for symmetric
differencing. The x-axis values are the center of the bins.

8.3 Why is the 2SML Standard Error So Large?

Our debiased point estimate of —13.23 for the own-price elasticity comes with a fairly large stan-
dard error of 1.82. The resulting 95% confidence interval is [—16.79, —9.66]. The large standard
error is due to the debiasing step. By contrast, the naive standard error for the 2SML plug-in
estimate of —11.65 is 0.25 (although this estimate is biased and so the standard error is not asymp-

totically valid).

The debiasing nuisance ¢(Z;) directly models how sensitive the final point estimate is to each ob-
servation. In the bias correction term, the debiasing nuisance is then multiplied by the prediction
residuals of the structural function: §(Z;)(Y; — f(D;)). When ¢(Z;) can take on extremely large
values, then our variance and standard errors can drastically increase. We find that the averaged
squared value of §(Z;) is ~ 270,000, and this is largely driven by observations right above 9-ending
price points. For example, the average squared value of §(Z;) for observations with price between
$5.00-$5.05 is ~ 4,500,000. To understand what is going on, note that because a large percentage
of the observations have prices bunched at price points with 9-endings like $4.99, the estimate
of the price elasticity is highly sensitive to observations with prices just above these price points.
However, there are very few observations with prices in the range $5.00-$5.05 — see Figure 1 —

meaning that we have a small effective sample size for estimating the discontinuity at the dollar.

41



Table 9: Elasticity Estimates Under Small Perturbations to Price

Noise Std. Debiased 2SML Elasticity (s.e.) Sieve IV Elasticity

None -13.23 (1.82) 255
le-3 -12.14 (1.70) 2.20
5e-3 -4.08 (0.25) 2.74
le-2 -1.86 (0.15) 2.74

Notes: Each row corresponds to a reanalysis with small mean-zero Gaussian noise added to the log own-price.
Noise Std.” is the standard deviation of the noise. Since the noise is added to log prices, 1e-3 corresponds to a
0.1% change. The noise is small enough that smooth models like Sieve IV are nearly unaffected.

This is not a mistake or limitation of our method, but a reflection of the underlying high uncer-

tainty.

Finally, we perform a simple perturbation experiment that cleanly illustrates the extent to which
our large point estimate and large standard errors are driven by discontinuities at price points. In
this experiment, we add a small amount of noise to the log price of organic strawberries in the
training data, erasing information at the discontinuities. The estimand under noise can be inter-
preted as a smoothed version of the original estimand. The amount of noise is so small relative to
the total variation in the data that classical attenuation bias is not a concern — in fact the estimate
of the elasticity using Sieve IV barely changes over the levels of noise we consider. We collect the
results in Table 9. As we add more noise to price, our debiased estimate of the price elasticity
falls to around —2 — in line with the estimates from smooth models like Sieve IV and 2SLS from
Table 8. The size of the standard error drops from 1.82 to 0.15. The noise added to price improves
identification (for the implied smoothed estimand) by shrinking the size of ¢(Z;), which was pre-
viously driven by the discontinuity at the dollar. Intuitively, the smoothed version of the elasticity

estimand is better-identified because there is plenty of global variation in prices.

9 Conclusion

In this paper, we introduced Two-Stage Machine Learning, a simple nonparametric IV procedure
that uses machine learning models for both the structural function and the instruments. This con-
trasts with existing estimators, which either (1) impose a linearity assumption in a fixed sieve or
kernel basis, or (2) solve computationally-intensive iterative optimization problems with conver-
gence issues that limit their effectiveness. Our key insight is that we can use the reduced form to
learn strong instruments for the structural function. Our first stage learns a basis of instruments by
predicting Y given Z, X, and in the second stage we estimate the structural function by predicting
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Y given D, X, projected onto this basis. We prove finite-sample convergence guarantees for our
estimated structural function, and develop a complimentary debiasing procedure that provides

valid asymptotic normal inference for scaler summaries like an average elasticity.

We revisit a demand estimation application using California supermarket data that features ex-
tensive bunching at price points: almost half of all observations end in 0.99. We show that our
procedure with tree ensembles achieves a nearly 8x reduction in NPIV estimation error compared
to the best prior approach. In particular, tree methods excel at modeling discontinuities, and we
find a strong response at the dollar boundary, resulting in an estimated average price elasticity
of around —13. This is between 2.5 to 6 times larger than estimates previously reported in the

literature using this same dataset.

Our methodology presents opportunities to revisit classic two stage least squares applications us-
ing large administrative datasets and machine learning. A number of extensions to our approach
would be useful across applied settings. First, our debiasing approach applies to scalar estimands,
but could be extended to debias conditional average treatment effects. Second, it would be inter-
esting to adapt our method to settings with very strong time-series dynamics that are common in
macroeconomics. Finally, we find that using the output of each tree in a gradient-boosting ensem-
ble works especially well in our second stage, but there may be other ways to construct a basis
from the ensemble. It would be interesting to develop a better theoretical characterization of the

corresponding induced Hilbert spaces. We leave these directions for future work.
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A Computing Projections in an RKHS

The 2SML algorithm involves computing the projection P, f, where f € R" is the vector with

elements f(D;) fori € {1,...,n}, and where
Py=®(@ @+ )"0,

When dy is greater than n, including infinite-dimensional ¢, then we can still efficiently compute
P, using the kernel matrix. Consider an RKHS #;, with PSD kernel k£ : Z x Z — R and corre-
sponding features ¢(Z) € Hy. Let K be the n x n matrix with entries k(z;, z;). Then for A > 0:

Py=K(K+ A"t

When )\ = 0, K need not be invertible, but we can instead adopt the minimum-norm solution by

replacing the inverse with the pseudoinverse as in e.g. Bartlett et al. (2020).

B Counterfactual Feature Derivation

Following the derivation for (5), let 7, denote the operator that maps ¢ € L2(Z) onto the best ap-
proximation of the conditional expectation E[¢(Z)|D] that is linear in ¢. In other words (7,¢)(d) =
¢(d)" B(g), where

B(q) = argminE[(¢(Z) — ¢(D)" B)?].

BER?
The projected Riesz loss in the population is:
min E[(7,¢)(D)° - 2m(T,q, D)]

= gggE[(w(D)TB(q))Q —2m(o(-) " B(g), D)]

:gggEuwanTﬁ@»Q—2wm%lﬂTﬁ@H,

where in the last line we’ve used the fact that E[m(f, D)] is a linear operator on f € La(D).

For the sample optimization problem, recall the shorthand definitions from the main text: let
¢ € R™ 4% be the matrix with rows ¢(D;), and let ¢ € R"*%, be the matrix with rows equal to

m(p, D;). Let ¢ € R% be the sample average of .. Write ¢ for the vector with entries ¢(Z;).
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Then we have:

Bla)= (g ¢+ D¢,
and so the sample optimization problem is:

L T
in{=qT P,q— 2Psq). 20
grélg{nq q — 2Peq} (20)

C Details for Theoretical Results

C.1 Empirical Risk Minimization Lemma

The following lemma is adapted from Bartlett et al. (2005); Foster and Syrgkanis (2023). Define the
star hull of a set G as star(G) := {ag|g € G, € [0, 1]}.
Lemma 1. Let A and B be function classes with A C B C Lo(Z) such that suppeg||blloc < 00. Let
a € A be any function satisfying L,(a) = infsea Ly (a) and let a* € A be any function satisfying
L(a*) = infyea L(a). Given Assumption 1 and assuming that {(g; z) is C-Lipschitz with respect to its
first argument over B, for any 6, satisfying the inequality:

Ry (star(B — a*), ) <
6 — Y

then with probability at least 1 — n), with constants that depends only on C and B:

log(1
la—allz <O (m Logl1/n) /”)> .
n
Proof. We have

la — a*[|3 < B(L(a) — L(a"))

< B((L(a) — L(a")) = (Ln(a) — Ln(a™))),

where the last line follows because L, (a) — L,(a*) < 0.

Define: § = 6, + \/log(1/n)/n. Then applying Lemma 12 of Foster and Syrgkanis (2023), with
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probability at least 1 — 7:
(L(@) = L(a")) = (Ln(a) — Ln(a")) < O(8]la — a”[|2 + &%),

where the constants depend only on C. Finally, applying the AM-GM inequality with § and ||a —
a*ll2, we get:

la — a”[|3 < O(5%).

C.2 Proof of Theorem 1

Theorem (Weak Metric Error Bound with General Loss and Fixed ¢). Let 6% be an upper bound on
the critical radius of 7—[2 Given Assumptions 1, 2, 3, and 4, with probability at least 1 — 21 we have:

f log(1
HT(]C_fO)HZﬁO<Hgo—g;‘;HZ_|_5Z+A¢+ og(n/n)>

where:

Proof. Define the projected function class,
Go(F) = A{Tof : | € F} CHj.

and define

g7~ € argmin L(g),
9€G4(F)

where by construction for some f* € F, we have g« = 7;5 f*. The function g+ is guaranteed to
exist: since F is closed and 7:5 is continuous, G4(F) is closed, and since G4(F) C HY, it is also

compact.

In what follows, we’ll write z < y when 2 < C'y for a constant C' that possibly depends on A or B.
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The value of the constant may differ from line to line. We have:

IT(fo— Pllz=llgo—Tflz
S L(Tf) = L(go)
= L(T5f) = L(go) + L(T f) = L(g0) — L(T5.) + L(g0)
= L(T4f) = L(g0) + A

Sllgo — Tofllz + Ag.

The inequality on the second line follows from convexity of L(g) and because g is the minimum

of L(g) over g € Ly(Z). The inequality on the fifth line is similar, but applying smoothness.

Next by the triangle inequality we have that:
lgo = Tofllz < 16" = Tofllz + lgo — Tof "Iz

and we can bound:

lgo — Tof % < L(Tof*) — L(go)
< L(Tyfo) — L(g0)

< llgo = 7o fol %,

where the first line follows from convexity of L, the second line because 7?5 f* is the minimum of
L(g) over g € G4(F) and fp € F, and the third line by smoothness of L. Putting this together we

have:

IT(fo = Pllz S 1T — Tofllz + llgo — Tafollz + Ay
<\ Tof* = Tofllz + 1 Tofo — Tofollz + llgo — Tofollz + Ay
= \Tof* = Toflz+ 1 Tofo— Tofollz+ llgo—gillz  + Ay

Vv
term 1 term 2 approximation error

The last line uses the fact that 7y fo is the Ly(Z) projection of gy onto Hy,.

We complete the proof by bounding terms 1 and 2 using the empirical risk minimization result

from Lemma 1.

Bounding term 1: Term 1 is the excess risk of the second stage. By construction, there will exist
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g € Gg(F) such that 95 = 7;]3 and

g; € argmin Ly, (g).
9€G4(F)
Therefore, g; is the empirical risk minimizer of L(g) over g € G4(F) and gy~ is the population risk
minimizer of L(g) over g € G4(F). Furthermore, by construction G4(F) C H?. Therefore, we can
apply Lemma 1 with B = H{: with probability at least 1 — 7,
Ao aon log(1/n
H%f—%ﬂzzwﬂ—mugOGﬂ%(/)>

n

Bounding term 2: Term 2 is the excess risk of empirical risk minimization over H? using the
squared loss for predicting fy(D), instead of the risk L(g). This can be bounded using any off-
the-shelf result for kernel ridge regression — see for example, Fischer and Steinwart (2020); Singh
(2024). We provide a bound based on the critical radius. The squared loss satisfies the conditions
in Assumption 1 — quadratic functions are smooth and convex, and because fy(D) is uniformly-
bounded and H¥ is uniformly-bounded, then the loss is a uniformly bounded quadratic and there-

fore Lipschitz.

Therefore, we can apply Lemma 1 using H? to get with probability at least 1 — 7:

. log(1
n%m—nmm<o<&+ gﬂmv-
O
C.3 Proofs for Section 5.4
Proof of Proposition 3
Proof. The result follows from Theorem 1. By construction, we have § € H i
Therefore [|g0 — g3z < [lg0 — 91| z- O
Proof of Proposition 4
Proof. The result follows by applying the triangle inequality and then Lemma 1. O
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C.4 Approximation Bias in Projection Step

We now discuss relaxing the following requirement from Assumption 4: The radius b is suffi-

ciently large such that 7, fo € H?.

Define the population projection onto the ball of radius b:

Ty f = argmin{E[(f(D) - 9(2))°]}.

geM?

Then the condition on b is equivalent to assuming 74 fo = 7:;’ fo. In the proof of Theorem 1, we
use this condition while bounding term 2. Without this condition, the bound has an additional

approximation term:

Applying Lemma 1 using H? to get with probability at least 1 — 7:

7 log(1
H%h—%MbSO@nh_mhh+ﬁ+ %imv-

As b increases, we have a trade-off. The approximation error, ||7;fo — 75 follz shrinks, but the
critical radius, 6% will grow. We can choose b to balance these two terms in such a way that asymp-
totically the approximation goes to zero, but in finite samples we control the variance term &0.
For an example of such a hyperparameter schedule and resulting rates under minimal additional
smoothness conditions, see Theorem 1 of Fischer and Steinwart (2020). The rates in Fischer and
Steinwart (2020) take the form +/log(n)/n but raised to a power depending on the smoothness of
T4 fo. See also Singh (2024).

C.5 Testing Assumption 5

Assumption 5 requires that A4(f) < 0, where

Ao(f) = LTH) — L(To )
~&[(v -eli(D)2)) | ~E[ (v - RH@) ]

Recall that 7, f, defined in Equation (12), is an approximation of E[f f(D)|Z] using ridge regression
of Y on ¢(Z). We know that for the true structural function we have Ay(fo) = 0 as n — 0. This
follows because E[fo(D)|Z] = E[Y|Z], and we constructed ¢(Z) such that E[Y|Z] is linear in ¢(Z),
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and so 7, fo — E[fo(D)|Z].

We propose a simple, feasible test for Assumption 5. We divide the data into training and test
samples (or use cross-fitting). In the training set, we obtain our 2SML estimate f. Then also in the
training set, we fit a machine learning predictor of f(D) given Z. We do model selection using
cross-validation within the training sample. This produces an estimate of 7 f, call it 7 f. This is
the same procedure we use in Equation (11). Then in the test sample, we compute the empirical

difference-in-means:

1 & PN PR

~ > [UTF.2i) — (T3 f. 2] (21)
i=1

To test for violations of Assumption 5, we run a permutation test to check if this difference-in-

means is statistically-significantly larger than zero. A sufficient but not necessary condition for

Equation (21) to equal 0 is that ridge regression in ¢(Z) is the best predictor of f(D) given Z, in

which case 7 f = ﬁ,]6

C.5.1 Summary of our findings in the data

We test for this condition in a number of real and synthetic datasets. We summarize the results
here and show the tests across datasets in Appendix C.5.2. Our main finding is that Assumption 5
depends on how we construct ¢. If we fit the reduced form using gradient-boosted trees and
take ¢(Z) to be the output of each individual tree, we find that the test virtually never rejects.
In fact, we usually have that ridge regression on ¢(Z) is the best predictor of f(D) and therefore
Tf= 7:5 f. However, if we make ¢ excessively simple, then the test can often reject. For example,
if the final reduced form prediction of the gradient-boosted tree ensemble is §(Z), we could take
#(Z) = §(Z). Then we have a 1-dimensional representation such that E[Y'|Z] is approximately
linear in ¢(Z). When we fit 2SML using this basis, we find that our permutation often rejects, and
the performance of the resulting f can be very poor. Similarly, if we choose ¢ using the lasso, if
the resulting basis is too sparse, the permutation test can reject. Note that the sparse lasso basis
is lower-dimensional than the original covaraites, whereas the gradient-boosted tree basis is often

orders of magnitude higher-dimensional than the original covariates.
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C.5.2 Tests for Assumption 5 across datasets

All permutation tests use 10,000 permutations. The resulting p-value is an estimate, and an upper
95% confidence interval on an estimated 0 with this many permutations is 0.00037. For each plot
in this section, we plot a histogram of the permutation for the difference in means in (21). We use a
vertical black line to denote the actual difference in means. Assumption 5 says that the population

version of this quantity should be less than or equal to 0.
Organic Strawberry Data; 2SML with Gboost Basis:

First, we test for Assumption 5 in our main specification for our empirical application, as described
in Section 8. The reduced form is fit using gradient-boosted trees. The resulting ¢(Z) is 3000-

dimensional. We show the result of our permutation test in Figure 3.
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Figure 3: Organic Strawberry Data; 2SML with GBoost Basis

The estimated p-value is 0.948, so there good reason to believe that Assumption 5 holds for our
main specification. The actual difference in means is -0.007, which is orders of magnitude smaller
than the squared means themselves — the MSE of T f (which is our measure of the out-of-sample

NPIV estimation error) is 0.274.
Organic Strawberry Data; 2SML with 1d Prediction Basis:

Technically, the 1-dimensional basis ¢(z) = §(z) satisfies the condition in Proposition 1. However,

when we use this basis for in our empirical application, this basis violates Assumption 5 as we can
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see in Figure 4.
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Figure 4: Organic Strawberry Data; 2SML with 1d Prediction Basis

The estimated p-value is 0.000, so the test very strongly rejects. To understand the absolute mag-
nitude, the mean squared error of 7; f is 0.289, which is essentially equal to 2SML with the full
Gboost basis. However, the MSE of 7 f (which is our measure of the out-of-sample NPIV estima-
tion error) increases all the way to 0.445. This is a severe degredation in performance. Note that
0.445 is still smaller MSE than the MSE for the minimax method, EnsemblelV, in Table 1 which
is 0.467. However the MSE is now worse than the GBoost/Spline estimator following Chen et al.

(2023), which achieves an MSE of 0.427.
Card 1995; 2SML with Gboost Basis:

We now test for Assumption 5 using the returns to schooling dataset from Card (1995). The out-
come is log wage, treatment is years of schooling, we use proximity to 4-year and 2-year colleges
as instruments. We use 5 controls: experience, and indicators for black, southern, SMSA, and
marriage. Our cross-validated gboost model for the reduced form results in ¢(Z) that is 322-

dimensional. We show the result of our permutation test in Figure 5.
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Figure 5: Card 1995; 2SML with GBoost Basis

The estimated p-value is 0.449, so the test does not reject. The actual difference in means is 0.003
which is orders of magnitude smaller than the squared means themselves — the MSE of 7 f is

0.741.
Census Housing Dataset; 2SML with GBoost Basis:

Next, we test Assumption 5 on our semi-synthetic Census housing dataset as introduced in Sec-
tion 7. We use a cross-validated GBoost model for the reduced form, resulting in a ¢(Z) that is

150-dimensional. The results of the permutation test are in Figure 6
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Figure 6: Census Housing; 2SML with GBoost Basis

The estimated p-value is 0.560 so the test does not reject. As in the cases above using the GBoost
basis, the actual difference means (-0.124) is two orders of magnitude smaller than the MSE of Tf
(28.4).

NYC Green Cab Dataset; 2SML with GBoost Basis:

Finally, we test Assumption 5 on our semi-synthetic NYC Green Cab dataset as introduced in
Section 7. We use a cross-validated GBoost model for the reduced form, resulting in a ¢(Z) that is

200-dimensional. The results of the permutation test are in Figure 7.
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Figure 7: NYC Green Cab; 2SML with GBoost Basis

The estimated p-value is 0.247. This is not significant at the 90% level, but is a smaller p-value
than in the other cases where we use a GBoost basis. However, the actual difference means is
miniscule: 0.003. This is very small compared to the MSE of 7 f which is 0.883. So if there is a
violation Assumption 5 on this dataset, it has an negligible impact on the final performance of the

model.

C.6 Moment Conditions for Asymptotic Normality

Assumption 8 (Moment Conditions). Define 0% = E[yy(D, Z,Y)?], k% = E[|vo(D, Z,Y)|?],¢* =
E[¢o(D, Z,Y)*]. Then the following moment bounds hold for some (Q,,q,q'):

1. E[m(f; D)*] < QlIflI%,
2. E[Y — fo(D)|D] < o2,
3. Nlgolle <@ lldlle < 7,
4. {(k/o)> + 12 0.
Parts of Assumption 8 are already satisfied by applying ?? to 2SML and 2SRR:

For example, we've assumed that fo € Fiy and supsez || f[lc < 0o by ?? applied to 2SML. Thus
it’s sufficient that Y is bounded almost surely to satisfy Assumption 8 (2). Note that in applying ??
to 25ML with the squared loss, we have assumed that the squared loss is Lipschitz. This already
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implies that Y must be bounded almost surely.

Similarly, we've already assumed that qo € JFr and supgcz, ||flloc < oo by ?? applied to 2SRR.

This implies that ||go||cc < 00 and [|¢]|cc < 00, satisfying Assumption 8 (3).
The other two parts of Assumption 8 require further assumptions placed on our estimand:

Assumption 8 (1) is a mean-squared continuity assumption on the linear functional 6( f). Note that
this is stronger than continuity (the conditional required for Riesz representation). Continuity

implies there exists C' < oo such that:
E[m(f; D)I* < C|IfII},

which is equivalent to the existence of the Riesz representer «ay that satisfies for some M < oo

(which is the operator norm of 6):

Elao(D)? < M2

By contrast, the mean-squared continuity assumption,
E[m(f; D)*] < QIIf b,

is a sufficient (but not necessary) condition for continuity with M? < Q.

Finally, Assumption 8 (4) is a condition on the moments of the efficient influence function. Sec-
tion B.3 of Chernozhukov et al. (2023) provides a set of conditions such that these moments are
bounded to be roughly on the same order as the operator norm, M or M?2. Note that M is the usual
measure of overlap of the functional 6, so this boils down to assuming that the degree of overlap

puts some constraints on the 3rd and 4th moments of the efficient influence function.

D Cross-Fit Debiased Estimate

Here we describe how to compute the debiased estimate with sample splitting.
1. Randomly partition the n samples into folds, I, k € {1, ..., K'}.

2. For each fold &, estimate the nuisances fk and ¢j, using all data not in I,.
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3. Compute the cross-fit debiased point estimate:

Z > m(frs Di) + @r(Zi)(Yi = fe(Di)).

k 116]k

4. Estimate the asymptotic variance:

ZZ(@D m(fi Di) — Gr(Z:) (Vi — fiu(D )))2_

k 1iely

E Details for Synthetic and Semi-Synthetic Evaluation

E.1 Forming IV Benchmarks from Prediction Tasks

We begin with a prediction dataset composed of (X} red, Yipred) pairs. The goal is produce a semi-
synthetic dataset with random variables Y, D, W, Z that follows the DGP, Y = fy(D, W) +¢, where
e satisfies E[e|Z, W] = 0, but such that e is correlated with both Y and D. This turns the original

prediction task into an endogenous prediction task that requires leveraging the instrument Z.

First, we fit a machine learning model (selected using cross-validation) that predicts YP™d using
XPred Next we choose a single dimension from X pred 15 be the “treatment” variable; call this DPred
and the remaining features TWP™<, We do so by computing feature importance measures from the
machine learning model, and select the feature with the highest importance. The importance mea-
sures are different for different models. For a linear model, we use the size of the coefficients; for
kernel ridge models, we use the average derivative with respect to the features; and for gradient

boosted trees we use the “gain” feature importances computed by the xgboost library.

Next, we generate an unobserved confounding variable, U, that we use to construct both D and
Y. For every observation in the original dataset, we draw Uj iid from a fixed distribution. We use
Poisson in our benchmarks when D is integer-valued. Next we form a confounded version of the

treatment. For each observation in the original dataset, we form:
D; =DM 1 U,

Then we construct the confounded outcomes. Let the covariates be the same as in the original data,
ie. W; = Wip red, Define the exogenous noise v; = Y;pred — fo(DfrEd, W;), which by construction
is approximately mean zero conditional on Dfred, W;. Define a function of the confounder, p(U),
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such that E[p(U)] = 0. Then our confounded outcomes are:
Yi = fo(Dis Wi) + p(Ui) + v

Notice that this matches the form of the NPIV problem, with ¢; = p(U;) + ;. Naively predicting

Y; with D;, W; will result in a highly biased estimate of fy because D; and ¢; are correlated.

Finally, we generate an instrument. For some function A (which may have vector valued output),
let
Z; = h(DP™Y).

By construction, Z; is independent of U; and v;, but is predictive of D; and is possibly correlated
with W;. Thus we satisfy the requirement that E[¢|Z, W] = 0. The relevance of Z; depends on the
functional form of h and the variance of the noise U;. For simplicity, in our benchmarks we let h

be the identity map, so the relevance of Z; is driven by the variance of U;.

Our final semi-synthetic dataset is composed of observations (Y;, D;, Z;, W;), one for each obser-
vation in the original dataset. For benchmarking, we divide this dataset into a training set and a
hold-out for evaluation. We run different IV procedures in the training set to produce estimates
of the structural function f, and then evaluate them in the hold-out sample using mean-squared

error and R? against the true structural function fo.

This end-to-end procedure can be used to turn any prediction task into a endogenous prediction
task with valid instruments. The following is a summary of the free parameters within this frame-

work that can be varied to produce different benchmarks:
e The choice of the “treatment” feature DP™d from the columns of XPred
¢ The distribution of the confounder, U
¢ The functional form of the outcome confounding, p(U)
¢ The functional form for the instruments, h(Dfred)

Note that the resulting benchmark maintains a variety of the complex correlations that exist in
the real data. The structural function fy will be the optimal predictor for the original task, which
may require very complicated tree ensemble models. The treatment D; will inherit the real-world
correlations with W; (all we have done is add independent noise to the original feature Dfred),

without us having to specify these correlations in advance. Similarly for the correlation structure
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between Z; and W;. The main synthetic component is the relationship between Z; and D;, and
in the examples below, we use simple functional forms for this relationship. However, in NPIV
for any candidate function f(D, W), the relevant object, E[f(D,W)|Z, W], will in general be a

complicated non-linear function of Z, making the choice of the functional form £ less important.

E.2 Coverage Simulation DGP

Our DGP first draws 3 covariates, X1, X2, X3 and an unconfounded treatment D. The variables

ﬁ, X1, X5 are draw iid from the standard normal distribution. We set:
X3 =4-expit(D — X1) — 2 + émeol

where ene ~ N (0,02 ;). We have a confounder U ~ N (0, 02), confounded treatment, D =

D + U, and instrument Z = D + ¢, with €, = N (0,02). The structural function is:

fo(D,X) =D - (0.2 +sin(D) + expit(X;) — 0.2 - X3),

with estimand:

oo = of) =5 |27

oD

The outcome is Y = fo(D, X) + p - U + €out With €out ~ N(0,02,,) and where p € R controls the

strength of confounding.

2

The key feature of our setting, is that as afncol + 05, — 0, X3 becomes a deterministic function
of D and X;. This induces a nonparametric version of multi-collinearity. In the nonparametric
model when o2 _ | + 02, — 0, the average derivative w.r.t. D becomes unidentified, because any
relationship between the outcome and D could be alternatively written as a relationship between
the outcome and X1, X3. In other words, if we make UIanol very small, the operator norm of 6(f),
or alternatively the norm of the Riesz representer o can become very large — in causal inference

language, we have poor overlap.

For all simulations, we use the following parameters: oj, = 0.06,0. = 0.08, 0oyt = 0.04,p = —8.
We then consider a medium overlap setting with o,o; = 0.4 and a poor overlap setting with
0meol = 0.05. Finally, we approximate the derivative numerically using symmetric differencing,

f(D+h,X)—f(D—h,X)

() ~ E = ,
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where we pick h = 0.1. For both settings, we get a ground-truth estimate of 6y = 0.7 by simulating

ten million samples and then calculating the derivative w.r.t. the true structural function.

F NPIV With and Without Covariates

For many NPIV methods, while it is without loss of generality to write D = (D, X) and Z =
(Z, X)), the case with covariates represents a major gap in difficulty. See Appendix C of Xu et al.
(2020) for a discussion. Fortunately, in 2SML we do not encounter this difficulty. Our first-stage
representation learning step finds a basis ¢(Z, X) that best predicts Y. In the second stage, the
projection Py kills information about X that is not relevant for predicting Y. We know that this
extraneous information in X is not used in E[fy(D, X)|Z, X] because of the NPIV moment condi-

tion. This is another advantage of our formulation.
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