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Abstract

The growing access to large administrative datasets with rich covariates presents an oppor-

tunity to revisit classic two-stage least squares (2SLS) applications with machine learning (ML).

We develop Two-Stage Machine Learning, a simple and efficient estimator for nonparametric

instrumental variables (NPIV) regression. Our method uses ML models to flexibly estimate

nonparametric treatment effects while avoiding the computational complexity and statistical

instability of existing machine learning NPIV approaches. Our procedure has two steps: first,

we predict the outcomes given instruments and covariates (the reduced form) and extract a

basis from this predictor; second, we predict the outcomes using the treatment and covariates,

but where the predictions are projected onto the learned basis of instruments. We prove that

under a testable condition, our estimation error depends entirely on the reduced-form predic-

tion task, where ML methods excel. We also develop a bias correction procedure that provides

valid confidence intervals for scalar summaries like average derivatives. In an empirical ap-

plication to California supermarket data featuring bunching at 99-ending price points, we find

our machine learning approach is crucial for modeling discontinuities in demand at the dollar

boundary: we reduce NPIV estimation error nearly seven-fold compared to previous estima-

tors and estimate a price elasticity that is 2.5-6 times larger than prior estimates.
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analyzing and preparing the results reported herein. All NielsenIQ data and results are redacted in this draft pending
approval for public release. Contact the author at causal@stanford.edu for more details.
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1 Introduction

Instrumental variable (IV) regression with continuous treatments and instruments underlies ap-

plications in empirical economics spanning returns to schooling (Card, 2001), the price elastic-

ity of demand (Hausman, 1996), effects of monetary policy (Stock and Watson, 2018), and the

marginal propensity to consume (Blundell et al., 2008). These applications have traditionally em-

ployed linear specifications solved with two-stage least squares (2SLS). The increasing availability

of high-quality administrative datasets with large sample sizes and rich covariate information

now makes it feasible to estimate machine learning models that can flexibly learn complex non-

linearities, discontinuities, and interaction effects. In settings with even moderate dimensionality

and sample size, machine learning methods like gradient boosted trees or neural networks achieve

substantially higher predictive accuracy than traditional nonparametric estimators such as sieve

and kernel regression. These parallel developments in data availability and flexible modeling

tools present an opportunity to revisit classic 2SLS applications in economics.

In this paper, we use machine learning models to estimate the nonparametric effects (also known

as the structural function), f0(D,X), of an endogenous continuous treatment D on an outcome

Y given covariates X , in a setting with instruments Z. For example, in a demand estimation set-

ting where D is price and X contains product and market characteristics, then f0(D,X) would be

the demand function. While heterogeneity in f0 is interesting in its own right, flexibly estimating

nonlinearities and interactions in f0(D,X) is also crucial for accurately estimating summaries like

the average price elasticity. We adopt the nonparametric instrumental variables (NPIV) frame-

work of Newey and Powell (2003), where the structural function f0(D,X) is the solution to the

conditional moment equality E[Y |Z,X] = E[f0(D,X)|Z,X].1 Our goal is to solve this moment

equality using machine learning models to represent both f0(D,X) and E[f0(D,X)|Z,X]. This

allows researchers to leverage the excellent out-of-performance prediction capabilities of modern

machine learning methods to capture nonlinearities and heterogeneity in causal effects.

However, NPIV is both computationally and statistically difficult to solve with arbitrary machine

learning models. The main challenge is nonlinearity. Under a linear model for f0, the moment

equality can be solved by two-stage least squares. In the first stage we estimate E[D|Z,X] —

i.e. we predict the treatment given the instruments and covariates. Then, in the second stage we

predict Y using the first-stage fitted values E[D|Z,X] and the covariates. When f0(D,X) is non-

linear, the traditional 2SLS approach fails because E[f0(D,X)|Z,X] ̸= f0(E[D|Z,X], X) — the

1Equivalently, we can write the GMM-type condition, E[Y − f0(D,X)|Z,X] = 0.
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“forbidden regression” problem (Hausman, 1983). Instead, for every candidate solution f(D,X),

we must solve an additional prediction task to estimate E[f(D,X)|Z,X] — the best predictor of

f(D,X) given Z and X . Previous work bypasses this challenge by assuming that f0(D,X) is

linear in a transformation of D and X , such as a sieve or kernel basis (Newey and Powell, 2003; Ai

and Chen, 2003; Singh et al., 2019), but these methods have limited ability to model complicated

real-world data, as we show later in our empirical application. In an important extension, Chen

and Ludvigson (2009); Chen et al. (2023) introduce a computationally-tractable procedure that

models f0 with an arbitrary machine learning algorithm by making the strong restriction that

E[f(D,X)|Z,X] is linear in a fixed sieve of the instruments uniformly across all f(D,X) — the

linearity assumption is moved from f0 onto the instruments.

A recent and growing literature uses machine learning methods like trees or neural networks to

model both f0(D,X) and E[f0(D,X)|Z,X], but incorporated into statistically difficult and compu-

tationally intensive procedures. For example, DeepIV (Hartford et al., 2017; Li et al., 2024) replaces

the traditional first stage with conditional density estimation, a statistically-intractable problem in

even moderately-high dimensions. Other estimators solve the conditional moment equality di-

rectly using adversarial training (Bennett et al., 2019; Dikkala et al., 2020; Muandet et al., 2020;

Liao et al., 2020), or by iterating between first and second stages (Xu et al., 2020; Bakhitov and

Singh, 2022). In addition to high computational costs, the instability of these adversarial/iterative

procedures can result in large estimation errors, even relative to simpler linear methods.

We introduce a simple and efficient two-stage procedure for NPIV that supports arbitrary machine

learning models in both stages — we call our procedure Two-Stage Machine Learning. As in Chen

et al. (2023), we can efficiently solve NPIV using machine learning to model f0, provided we

represent the instruments linearly in some basis like a sieve. Call this basis ϕ(Z,X). We show

that the NPIV estimation error with such an approach is ultimately limited by how well ϕ(Z,X)

linearly predicts the outcomes Y . This suggests a natural solution: learn ϕ(Z,X) by using machine

learning to predict Y given Z and X , and then extract a basis from the fitted predictor. This

prediction task estimates E[Y |Z,X] — called the “reduced-form” in linear IV. Since E[Y |Z,X] =

E[f0(D,X)|Z,X], constructing ϕ(Z,X) from the reduced form guarantees that ϕ(Z,X) are strong

instruments for f0(D,X).

Accordingly, Two-Stage Machine Learning works as follows: in our first stage, we predict Y given

Z and X using machine learning, and construct a basis ϕ(Z,X) from the predictor. For example,

we fit the reduced form with gradient-boosted trees, and then take ϕ(Z,X) to be the output of
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each individual tree in the ensemble. In our second stage, we estimate the structural function

with machine learning as in Chen et al. (2023) using the ϕ(Z,X) learned in the first stage. To our

knowledge, this is the first NPIV estimator with an easy-to-run two stage structure that incorpo-

rates off-the-shelf ML predictors for both f0 and E[f0(D,X)|Z,X]. Beyond helping to choose the

basis ϕ(Z,X), the reduced form also serves as a convenient specification test for existing methods

like Newey and Powell (2003); Singh et al. (2019); Chen et al. (2023): if sieve or kernel methods are

not the best mean-squared error predictor for the reduced form, then they cannot be well-specified

for E[f0(D,X)|Z,X] in finite samples.

Additionally, we provide valid inference and asymptotic normal confidence intervals for scalar

summaries of the structural function like the average derivative — in applied work, this may

correspond to the average price elasticity or marginal propensity to consume. Because machine

learning models typically introduce bias to reduce variance, naively using our estimated struc-

tural function to compute a point estimate will not yield an asymptotically normal estimator.

Therefore, we develop a bias correction procedure based on double/debiased machine learning

(Chernozhukov et al., 2023) that yields an unbiased point estimate for estimands like the aver-

age derivative with valid confidence intervals. The bias correction procedure requires solving a

second conditional moment equation, facing the same statistical and computational challenges as

NPIV. We show that an analogous Two-Stage Machine Learning procedure applied to a different

loss function also solves the debiasing problem.

We prove finite-sample-valid error bounds and convergence guarantees for Two-Stage Machine

Learning under a general loss function, subsuming both NPIV and the debiasing step as special

cases. Our main theoretical contribution is to show that under a testable condition, the estimation

error is entirely driven by the difficulty of the reduced form prediction task. We show that this

condition holds in all datasets we consider when we construct ϕ(Z,X) using gradient-boosted

trees. Importantly, we avoid requiring that ϕ(Z,X) can uniformly approximately E[f(D,X)|Z,X]

for all f . Existing methods like the Sieve Minimum Distance estimator from (Chen et al., 2023) and

Kernel IV (Singh et al., 2019) can be written as a special case of our procedure with (fixed) sieve and

kernel bases for ϕ(Z,X) respectively, and so they inherit our analysis. This partly explains why

our Two-Stage Machine Learning method outperforms these previous estimators in our empirical

application — gradient-boosted trees achieve an out-of-sampleR2 for the reduced form prediction

task that is 0.33 better than sieve regression, and 0.2 better than kernel ridge regression.

Because our convergence guarantee applies to both estimating the structural function and the de-
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biasing step, we can derive conditions under which debiased Two-stage Machine Learning satis-

fies the convergence rates for asymptotic normality from Chernozhukov et al. (2023). In particular,

our debiasing procedure enjoys “double robustness to ill-posedness”, meaning that as long as we

achieve fast rates for the reduced-form problem — for example, using standard analyses from sta-

tistical learning theory — then we can obtain a valid confidence interval if one or even (in some

cases) both inverse problems are severely ill-posed. We provide examples of concrete rates when

our algorithm is instantiated using tree ensembles.

We evaluate two stage machine learning using synthetic and semi-synthetic data. First, we assess

how well our estimate approximates the true structural function as measured in mean squared

error — this validates our L2-convergence guarantees and demonstrates how well we can capture

rich heterogeneity in the structural function. Our evaluation uses two semi-synthetic benchmarks

constructed by adding correlated noise to large datasets on taxi fares and house prices. Compared

to existing NPIV estimators, we improveR2 for the true structural function on the two benchmarks

by at least 0.1 and 0.15 respectively. Second, we assess the coverage of our debiased confidence

intervals on a synthetic average derivative estimation task. We improve coverage for the 95%

confidence interval from 70% without debiasing to 94.4% with debiasing, demonstrating that bias

correction can be quite important for valid inference in practice.

Finally, we apply our debiased Two-Stage Machine Learning procedure to demand estimation us-

ing the California supermarket data from Compiani (2022). This dataset features extensive bunch-

ing at 9-ending price points. For example, of our observations on organic strawber-

ries have a price ending in 0.99, and have a price of exactly . The tendency of prices to

bunch at 9-endings has been widely observed (Anderson and Simester, 2003; Snir and Levy, 2021),

contributing to uniform pricing (DellaVigna and Gentzkow, 2019) and asymmetric price rigidity

(Levy et al., 2020). Our Two-Stage Machine Learning approach using tree ensembles excels at flex-

ibly modeling the discontinuities in demand at the dollar boundary, resulting in a nearly seven-

fold reduction in NPIV estimation error compared to the best previous estimator. Our debiased

estimate of the average own-price elasticity is , between 2.5 and 6 times larger than previous

estimates reported using this same dataset (Compiani, 2022; Chen et al., 2023). We find that our

estimate is driven by large responses at the dollar boundary; for example, our estimated average

price elasticity among the observations with price exactly is around . Our results have

immediate implications for price rigidity: a supermarket using 99-ending prices cannot pass small

increases in cost onto the consumer without realizing potentially large decreases in demand.
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The paper proceeds as follows. Section 2 describes the NPIV framework and reviews previous

estimators. Section 3 introduces our new estimator. Section 4 describes our debiasing procedure to

obtain standard errors. Section 5 presents our theoretical results. Section 6 evaluates our method

with synthetic data. Section 7 presents our empirical application to demand estimation. Section 8

concludes.

2 Problem Setup

We adopt the nonparametric instrumental variables (NPIV) framework of Newey and Powell

(2003). Let D ∈ D denote the treatment variable, Z ∈ Z the instruments, X ∈ X the covariates,

and Y ∈ R the outcome. Our object of interest is the structural function f0 satisfying

Y = f0(D,X) + ϵ, E[ϵ|Z,X] = 0. (1)

Notice that the NPIV framework already imposes a substantive restriction: the structural function

exhibits heterogeneity only in (D,X) with unobserved variables entering additively through ϵ.

Including a very rich covariate set X weakens this heterogeneity restriction and also possibly

helps secure the exogeneity restriction, E[ϵ|Z,X] = 0.

We are often interested in scalar summaries of f0, like an average derivative. However, the full

structural function itself can also be of independent interest, e.g. for predicting counterfactual out-

comes, or flexibly assessing heterogeneity in treatment effects. We now provide some examples:

Example 1 (Demand Estimation). For a demand estimation problem, Y might be market share for a good,

D endogenous prices, and X other market-level covariates. For example, in the strawberry demand setting

of Compiani (2022), Y is market share for organic/non-organic strawberries, D is prices of organic/non-

organic strawberries, and X includes a measure of taste for organic products, availability of other fruit,

and market-level income. Common instruments Z are the price of the same product in nearby markets

(Hausman, 1996), and wholesale prices faced by retailers. In this setting, f0(D,X) is the demand function,

and the average derivative with respect to D is the average price elasticity of demand.

Example 2 (Consumption out of Permanent Income). Instrumental variables have been widely used

to disentangle transitory and permanent components of income (Dynan et al., 2004; Blundell et al., 2008;

Straub, 2019). In this setting, Y is household consumption, D is household income, and Z is an instrument

for permanent income such as lagged or future income. Relevant covariates X include, age, family size,

education, and asset position. The marginal propensity to consume out of permanent income is the average
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derivative of the structural function f0(D,X) with respect to D. The heterogeneity in X is of particular

interest, including how strongly the spending response depends on liquid assets and debt.

While the covariates X are important in many applications, without loss of generality, we shorten

notation by writing D for (D,X) and Z for (Z,X).2

There are two equivalent ways to express f0 as the solution to an optimization problem. First, (1)

implies that E[Y − f0(D)|Z] = 0, giving rise to the GMM-style problem:

f0 = argmin
f

{
max

g
E[g(Z)(Y − f0(D))]

}
. (2)

Alternatively, the moment condition can be written as:

E[Y |Z] = E[f0(D)|Z]. (3)

Applying the characterization of the conditional expectation as the best mean squared error pre-

dictor, we get the nested regression problem:

f0 = argmin
f

E
[
(Y − E[f(D)|Z])2

]
. (4)

Unfortunately, minimizing the (equivalent) optimization problems (2) and (4) directly over flexi-

ble function classes like gradient-boosting or neural networks presents substantial computational

challenges. In either case, evaluation of the objective function at each candidate f requires solving

a nested optimization problem — for (2), the optimization over g; for (4) to estimate E[f(D)|Z].

2.1 Previous Approaches to NPIV

A large and growing literature studies methods for solving the NPIV problems (2) and (4). Most

existing estimators fall into one of two broad categories. First, methods that impose linearity

(possibly in a Sieve or RKHS basis) on either E[·|Z] or f0(D). Either linearity restriction will result

in a simple and computationally-efficient two stage procedure. The second category are methods

that use arbitrary machine learning models for both E[·|Z] and f0(D), but incorporated into an

iterative or adversarial/minimax training procedure. We summarize existing NPIV estimators in

Table 1. Our 2SML estimator is the first to support arbitrary machine learning estimators in both

the first and second stage, but while maintaining an easy-to-use, computationally efficient, and

2This is without loss of generality for our algorithm, but not for all NPIV algorithms. See Appendix F.
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non-iterative two-stage structure.

Table 1: Existing NPIV Estimators

Estimator E[·|Z] f0(D) Iterative? Reference

2SLS Linear Linear No
Split Sample ML IV Any ML Linear No Chen et al. (2020)
Sieve IV Sieve Sieve No Newey and Powell (2003)
Kernel IV RKHS RKHS No Singh et al. (2019)
Sieve Minimum Distance Sieve Any ML No Chen et al. (2023)
SAGD IV RKHS Any ML No Fonseca et al. (2024)
Deep Feature IV Any ML Any ML Yes Xu et al. (2020)
Minimax Approaches Any ML Any ML Yes See Section 2.1.3
Two Stage ML Any ML ✓ Any ML ✓ No ✓ This Work

Note: Deep IV (Hartford et al., 2017; Li et al., 2024) performs conditional density estimation instead of estimating
E[·|Z]. We discuss Deep IV at the end of Section 2.1.

2.1.1 Two Stage Least Squares

2SLS is an important special case of the optimization problem (4) when f0 is linear. Let D ∈ Rd.

Applying linearity we have:

min
β∈Rd

E
[(
Y − E[β⊤D|Z]

)2]
= min

β∈Rd
E
[(
Y − β⊤E[D|Z]

)2]
.

In this last expression, E[D|Z] is the traditional first-stage regression of D on Z. Importantly, we

can estimate the first-stage once, and then optimize over β afterward, resulting in a computationally-

efficient algorithm. Traditional 2SLS also approximates E[D|Z] with a linear model, but Chen et al.

(2020) shows that with appropriate sample-splitting, we can fit E[D|Z] using arbitrary machine

learning models. However, a linear model for f0 will usually be high misspecified, especially

with high-dimensional covariates. Later, in our empirical application, we find that imposing a

misspecified linear model for f0 leads to very strong attenuation of the average price elasticity.

Previous methods have introduced non-linearity into f0 by representing the structural function

as linear in a fixed transformation of D and X , such as a sieve (Newey and Powell, 2003; Ai and

Chen, 2003, 2007) or RKHS basis Singh et al. (2019). These methods still have a simple two-stage

procedure, but now the first stage requires predicting every element of the transformation instead

of just D. One of our key empirical findings is that these fixed transformation are insufficient

for modeling the structural function in finite samples — this finding is corroborated by recent

theoretical results for NPIV in Kim et al. (2025).
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2.1.2 Projected Loss Minimization

The methods we have discussed so far impose linearity in f0(D) to obtain a computationally-

efficient two-stage procedure, while allowing E[·|Z] to be arbitrary. In an important extension,

Chen and Ludvigson (2009) and Chen et al. (2023) show that we can alternatively impose linearity

in E[·|Z], while allowing f0(D) to be arbitrary. The algorithm minimizes the mean squared error

of prediction Y given D, but where the predictions are first projected onto a basis ϕ(Z) — there-

fore we call this optimization problem “Projected Loss Minimization”. This approach has been

adopted as a sub-step of more complicated iterative methods like Xu et al. (2020); Bakhitov and

Singh (2022), and will be the starting place for our method that we introduce in Section 3.

We now describe the approach. The challenge with solving (4) when representing f0 with a ma-

chine learning model is that for each candidate function f(D), we have to solve a nested regression

problem to estimate E[f(D)|Z]. However, if we estimate E[f(D)|Z] using ridge regression in some

basis ϕ, this has a closed-form solution, resulting in a straightforward convex optimization prob-

lem.

Let ϕ : Z → Rdϕ denote a feature map. Let Tϕ denote the operator that maps f ∈ F onto the best

approximation of E[f(D)|Z] that is linear in ϕ. In other words (Tϕf)(z) = ϕ(z)⊤β(f), where

β(f) := argmin
β∈Rdϕ

E[(f(D)− ϕ(Z)⊤β)2].

In the projected loss minimization framework, we replace (4) with:

min
f∈F

E
[(
Y − (Tϕf)(Z)

)2]
. (5)

The finite sample version of (5) can be solved efficiently, even over complicated function classes F :

given a sample of n independent observations (di, zi, yi)ni=1, let y ∈ Rn denote the outcome vector

and Φ ∈ Rn×dϕ the feature matrix with i-th row ϕ(zi)
⊤. With slight abuse of notation, let f ∈ Rn

denote the vector with i-th element f(di). For λ ≥ 0, define the (regularized) projection matrix:

Pϕ = Φ(Φ⊤Φ+ λI)+Φ⊤, (6)
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where + denotes the Moore-Penrose pseudoinverse.3 The sample analog of (5) is

min
f∈F

1

n
∥y − Pϕf∥22. (7)

The projected loss (7) is a convex optimization problem amenable to standard machine learning

algorithms including gradient boosting and neural networks.

An exactly analogous projection approach works for solving the GMM-type problem Equation (2),

resulting in the finite sample problem:

min
f∈F

1

n
∥Pϕ(y − f)∥22, (8)

The two optimization problems (7) and (8) have identical gradients, and so are equivalent. Chen

and Ludvigson (2009); Chen et al. (2023) solve Equation (8) using sieves and so they call their

method “Sieve Minimum Distance”. Fonseca et al. (2024) solves a slightly different optimization

problem, but also represents E[f(D)|Z] via the closed-form ridge regression solution in an RKHS.

2.1.3 Iterative Methods

Notice that for the ϕ-projected optimization problem (5) to approximate the original problem (4)

accurately, E[f(D)|Z] must be well-approximated by linear functions of ϕ(Z) uniformly over f ∈

F . This requirement becomes increasingly restrictive as F grows more complex. Recent work

addresses this limitation by adaptively learning ϕ jointly with optimizing over f . These more

complicated procedures still involve solving the projected loss minimization problem (7) as a sub-

step.

For example, Xu et al. (2020) and Bakhitov and Singh (2022) employ an iterative procedure. First,

given ϕ, they solve (7) for f . Second, given a f̂ , they update ϕ by solving

min
ϕ,β

1

n
∥f̂ − Φβ∥22. (9)

They alternate between these two stages until convergence. This constitutes a bi-level optimiza-

tion problem, which can be quite difficult to solve (Hong et al., 2023; Petrulionytė et al., 2024).

Several methods (Bennett et al., 2019; Dikkala et al., 2020; Muandet et al., 2020; Liao et al., 2020)

3This formulation supports the case where dϕ > n and infinite-dimensional ϕ. In these settings, the projection can
still be computed efficiently as we describe in Appendix A. When λ = 0, the inverse need not exist; the pseudoinverse
instead provides the minimum-norm solution to the implied least-squares problem.
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solve (2) directly with minimax optimization. This is equivalent to learning ϕ and f jointly while

solving (8):

min
f∈F

max
ϕ

1

n
∥Pϕ(y − f)∥22, (10)

While theoretically appealing, such minimax formulations present substantial computational chal-

lenges in practice. Section 7 of Dikkala et al. (2020) demonstrates that (10) can be implemented

using tree ensembles by alternating between first and second stages, as in Xu et al. (2020) — they

call this algorithm “Ensemble IV”.

Finally, a few methods based on conditional density estimation do not fit neatly into the projection-

based framework we’ve outlined above. Deep IV (Hartford et al., 2017; Li et al., 2024) is a two stage

procedure using arbitrary machine learning algorithms, but where the first stage requires estimat-

ing the full conditional distribution of the treatments given the instruments. This is a notoriously

difficult problem except with very low dimensional instruments, and is more or less infeasible

when both treatments and instruments are high-dimensional, as is the case with rich covariates.

See Ji et al. (2023) for a related discussion on conditional density estimation for partial identifica-

tion.

3 Two-Stage Machine Learning (2SML)

Our algorithm, Two-Stage Machine Learning, solves the projected minimization problem (7), but

learns ϕ adaptively from the data using the reduced form. Recall that the central challenge with (7)

is finding features ϕ such that E[f(D)|Z] is approximately linear in ϕ(Z) for all f . If f is linear, this

reduces to estimating E[D|Z]. But for flexible non-linear function classes like tree ensembles or

neural networks, we need fixed features ϕ that approximate E[f(D)|Z] uniformly over all f ∈ F ,

a difficult and potentially impossible task.

Our key insight is to side-step this challenge by directly targeting the population minimizer of

problem (4), which is f0(D). From the definition of the NPIV problem, we know that E[f0(D)|Z] =

E[Y |Z]. This suggests a natural strategy: if we can construct ϕ such that E[Y |Z] is linear in ϕ(Z),

then E[f0(D)|Z] is guaranteed to be linear in ϕ(Z) as well. The following result is immediate:

Proposition 1. For any ϕ : Z → Rdϕ , if there exists β0 ∈ Rdϕ such that E[Y |Z = z] = ϕ(z)⊤β0, then

(Tϕf0)(z) = E[f0(D)|Z = z]. Furthermore, f0 achieves the minimum of the projected loss (5), and the

minimum of (4) and (5) are identical.
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The conditional expectation E[Y |Z] is the best mean-squared error predictor of Y given Z. There-

fore, we can predict Y given Z using machine learning, and then construct a representation ϕ from

the resulting predictor (in a way that describe in more detail below).

The observations above motivate our two-stage procedure:

Stage 1 (Reduced Form): Fit a machine learning model ĝ(Z), to predict Y given Z. Extract a

feature representation ϕ(Z) from this predictor such that ĝ(Z) = ϕ(Z)⊤β.

Stage 2 (Projected Loss Minimization): Solve the optimization problem:

min
f∈F

1

n
∥y − Pϕf∥22

with the learned features ϕ from Stage 1 to get an estimate f̂ .

By learning ϕ directly from the reduced-form relationship, we ensure that the features are well-

suited for approximating the conditional expectation of the true structural function, but without

the computational complexity of iterative or minimax methods. Note that because we make use of

very flexible machine learning function classes like tree ensembles to learn ϕ, the two stages must

be fit in separate samples.

Not all ways of constructing the basis ϕ from the predictor ĝ are equally good. For example, if

ĝ(Z) is a sufficiently good predictor, then the 1-dimensional representation ϕ(z) = ĝ(z) would

satisfy the condition in Proposition 1. However, we will later show, empirically and theoretically,

that this basis is brittle and can lead to large estimation errors.

Instead, we will exploit the fact that virtually all machine learning algorithms produce predictors

of the form ĝ(Z) = ϕ(Z)⊤β for some feature map ϕ that is learned from the data. For example,

with gradient-boosted trees, the prediction of the entire ensemble is a linear combination of the

output of individual trees. Thus, we could fit a predictor of Y given Z using a gradient-boosted

tree ensemble and then take ϕ to be the vector of outputs of each tree in the ensemble. This

representation satisfies the conditions of Proposition 1, and we will demonstrate that it works

well in practice. Similarly, for neural networks the natural choice of ϕ is the last-layer embedding.

We provide a step-by-step description of our procedure in Algorithm 1.
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Algorithm 1 Two Stage Machine Learning (2SML)

1: INPUT:
• Dataset with n observations of (Y,D,Z)
• Function classes G and F
• Projection regularization parameter λ ≥ 0

2: Divide the observations into two disjoint samples.
3: FIRST STAGE:

In the first sample, solve the reduced form prediction problem:

ĝ = argmin
g∈G

∥y − g(Z)∥22,

with corresponding representation ϕ such that ĝ(z) = ϕ(z)⊤β, for some β.
For example, for gradient-boosted trees, ϕ would be the output of each individual tree.

4: Let Φ be the matrix with rows ϕ(zi) for i in the second sample. Compute the regularized
projection matrix:

Pϕ = Φ(Φ⊤Φ+ λI)+Φ⊤.

5: SECOND STAGE:
In the second sample, solve the projected loss minimization problem:

f̂ = argmin
f∈F

∥y − Pϕf(D)∥22.

6: OUTPUT: f̂ , the estimate of the structural function.

3.1 A Brief Preview: The Importance of ML for the Reduced Form

On what kind of datasets are machine learning models necessary compared to sieve or kernel

models which are also nonparametric? Recall that the assumption underlying methods that use

sieve or kernels bases for ϕ(Z) — including Newey and Powell (2003); Singh et al. (2019); Chen

et al. (2023) — is that projecting onto this fixed ϕ(Z) is sufficient to model E[f(D)|Z] for all f . In

particular, because E[f0(D)|Z] = E[Y |Z], this assumption implies that ridge regression of Y on

ϕ(Z) must be the best out-of-sample predictor of Y given Z. If instead tree ensembles provide a

significantly better predictor of Y given Z, then this is direct evidence that using a sieve/kernel

for ϕ(Z) is insufficient.

In a brief preview of our empirical application, we now demonstrate that gradient-boosted tree

ensembles (GBoost) are a substantially better predictor for the reduced form in the demand dataset

from Compiani (2022) using NielsenIQ scanner data. This dataset has observations, Y is

market-share for organic strawberries, andZ is 9-dimensional, with 5 instruments and 4 covariates

— we defer a complete description of the setting to Section 7. We compare the reduced form

13



MSE of GBoost to (1) ridge regression on the spline basis from Chen et al. (2023); (2) kernel ridge

regression. For each of these predictors, we test for a statistically-significant difference in out-of-

sample mean-squared error vs GBoost using a one-sided permutation test. If this permutation test

rejects, this is evidence that the corresponding ϕ(Z) does not sufficiently model E[f0(D)|Z]. We

compare this to ridge regression in our proposed representation ϕ(Z), which uses the output of

the individual trees in the GBoost model. For our Two-Stage Machine Learning approach to work,

this should predict at least as well as the original GBoost model. We summarize the results in

Table 2.

The gradient-boosted tree ensemble is an enormously better predictor for the reduced form task

than splines or kernel ridge. This suggests that solving NPIV with a spline or kernel basis for

the instruments will be severely mis-specified, even if using a gradient-boosting or neural net-

work model for the structural function as in Chen et al. (2023). By contrast, ridge regression on

our proposed GBoost basis actually improves on the performance of the baseline GBoost model,

demonstrating the strength of our proposed basis. For comparison, at the end of Table 2, we also

include the MSE of a neural network predictor. The neural network outperforms the sieve and

kernel methods, but still has a holdout R2 that is 0.13 worse than that of GBoost.

Table 2: Reduced Form Prediction Accuracy for Compiani (2022)

Predictor Hold-out R2 Hold-out MSE p̂ for H0 = MSE ≤ GBoost

With trees
GBoost -

Ridge on GBoost Basis
Spline Ridge
Kernel Ridge

Neural Network

Notes: We randomly use 75% of the data for training, and the remaining 25% as the hold-out. All hyperparameters
are chosen with cross-validation in the traing set. We test for a statistically-significant difference in MSE vs GBoost
using a permutation test with 10, 000 permutations. The resulting p-value is an estimate, and an upper 95%
confidence interval on an estimated 0 with this many permutations is 0.00037.

4 Standard Errors for Linear Functionals with Debiasing

Often, we are interested in a scalar summary of the structural function f0. Let θ be a continuous

linear functional over f : D → R that, for some m, takes the form:

θ(f) := E[m(f,D)].

We consider estimation and inference for the estimand θ0 := θ(f0).
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Example (Impulse Response). Consider a setting with f0(D,X) where D ∈ R. Then,

θ(f0) = E[f0(D + 1, X)− f0(D,X)]

is the average impulse response for the structural function.

Example (Own- and Cross-Price Elasticities). Consider a demand estimation setting with two goods

where Y is the log market share for good 1. Let the structural (demand) function be f0(D1, D2, X), where

D1 is the log price of good 1, D2 is the log price of good 2, and X are exogenous market characteristics.

Then:

θo(f0) = E
[
∂f0(D1, D2, X)

∂D1

]
, θc(f0) = E

[
∂f0(D1, D2, X)

∂D2

]

are the own-price and cross-price elasticities respectively.

The simple plug-in estimator for θ0 using the output of Algorithm 1 is:

θ̂P =
1

n

n∑
i=1

m(f̂, Di).

However, even if the estimator of f̂ is consistent for f0, machine learning estimators usually lever-

age bias in order to reduce variance. This may be optimal for uniformly estimating f0, but the

bias will pass through to the plug-in estimate. As a result, θ̂P will generally not be asymptotically

normal, and it is unclear how to obtain valid confidence intervals.

We now provide a debiasing procedure that corrects for the bias when estimating θ0, resulting

in an asymptotically normal estimator. Our approach is based on the debiasing framework of

Chernozhukov et al. (2023). If f0 were a conditional mean instead of the solution to the NPIV

conditional moment equation, then we would have a standard double/debiased machine learning

problem (Chernozhukov et al., 2018). In that standard setting, debiasing involves estimating a

nuisance function called the Riesz representer of the functional θ4. Let L2(D) be the Hilbert space of

functions of D with finite second moment. When θ is linear and continuous, there exists a unique

function — the Riesz representer — α0 ∈ L2(D) such that:

θ(f) = E[α0(D)f(D)], ∀f ∈ L2(D).

4For earlier uses of the Riesz representer for semiparametric estimation in econometrics see Ai and Chen (2003);
Chen et al. (2006); Ai and Chen (2007).
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We can estimate α0 by minimizing the Riesz loss as in Chernozhukov et al. (2022b, 2021, 2022a):

α0 = argmin
α∈L2(D)

E[(α(D)− α0(D))2] = argmin
α∈L2(D)

E[α(D)2 − 2m(α;D)︸ ︷︷ ︸
Riesz loss

]. (11)

Remarkably, even though α0 is unknown, minimizing the average (observable) Riesz loss is equiv-

alent to minimizing the average squared error for α0.5

In the NPIV setting, where f0 is defined by a conditional moment equality, α0 is no longer the

relevant debiasing nuisance. Instead, Severini and Tripathi (2012) show that θ(f0) is identified if

and only if there exists a q0 ∈ L2(Z) such that E[q0(Z)|D] = α0(D).6 Given estimates f̂ for f0 and

q̂ for q0, the resulting debiased NPIV estimator from Chernozhukov et al. (2023) is:

θ̂D =
1

n

n∑
i=1

m(f̂ ;Di) + q̂(Zi)(Yi − f̂(Di)). (12)

All that remains is to obtain an estimate q̂ of the debiasing nuisance. Since E[q0(Z)|D] = α0(D) is

also a conditional moment equation, we can use a two stage machine learning procedure, just as

we used to estimate f̂ . Recall that the structural function f0 is defined by the squared loss mini-

mization problem in Equation (4), which given a learned representation ϕ, we replaced with the

projected loss minimization problem Equation (5). A similar argument holds for q0, but applied

to the Riesz loss (11) instead of the squared loss, and with the roles of D and Z reversed. This idea

— that the same strategy can be used to estimate both f̂ and q̂ — is not new, and was applied to

minimax estimators in Ghassami et al. (2022); Bennett et al. (2022). Our procedure for estimating

q̂ works as follows:

Stage 1 (Riesz Regression): Fit a machine learning model α̂(D), that minimizes the Riesz loss (11).

Extract a feature representation φ(D) from this predictor such that α̂(D) = φ(D)⊤β.

Stage 2 (Projected Loss Minimization): Minimize the projected Riesz loss using the learned fea-

tures φ from Stage 1 to get an estimate q̂.

The projected Riesz loss minimization problem in the sample takes a convenient form by exploit-

ing linearity — we defer the derivation to Appendix B. Let φ ∈ Rn×dφ be the matrix with rows

φ(Di), and let φcf ∈ Rn×dφ , be the matrix with rows equal tom(φ,Di). Let φ̄cf ∈ Rdφ be the sample

5Chen et al. (2014); Chen and Pouzo (2015) also estimate the Riesz representer directly with least squares.
6See Ai and Chen (2012) for a related derivation of the efficient score.
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average of φcf. Define:

Pφ := φ(φ⊤φ+ λI)φ⊤, Pcf := φ̄cf(φ
⊤φ+ λI)φ⊤.

To shorten notation, we write q for the vector with entries q(Zi). Then the second stage optimiza-

tion problem is:

min
q∈Q

{
1

n
q⊤Pφq − 2Pcfq

}
. (13)

In the next section, we will establish rates of convergence for both f̂ and q̂ using our two stage

procedure, along with conditions that guarantee that the debiased estimate θ̂ is asymptotically

normal. Valid confidence intervals can be computed with standard error σ̂/
√
n, where

σ̂2 =
1

n

n∑
i=1

(
m(f̂ ;Di) + q̂(Zi)(Yi − f̂(Di))− θ̂D

)2
. (14)

Note that both θ̂D and σ̂2 should be estimated using cross-fitting as in Chernozhukov et al. (2023),

but we suppress cross-fitting in the main text for notational convenience. We describe how to

compute the cross-fit estimate in Appendix D.

5 Theoretical Guarantees

In this section, we present a formal definition of our Two-Stage Machine Learning estimator min-

imizing a general loss function. Special cases include (1) the squared loss for the outcomes, re-

sulting in an estimator for f0; and (2) the Riesz loss, resulting in an estimator for q0. We prove

finite-sample-valid rates of convergence for our estimates, and give examples instantiating these

rates for different choices of machine learning algorithms. Finally, by applying these rates for the

nuisances, we establish conditions under which the debiased estimate θ̂D is asympotically normal

with standard error σ̂/
√
n. Proofs are deferred to Appendix C.

Notation: Let L2(D) denote the Hilbert space of functions f : D → R that are square integrable

with respect to the distribution of D, i.e. E[f(D)2] < ∞. The inner product in L2(D) is ⟨f, g⟩ :=

E[f(D)g(D)], and we denote the usual Hilbert space norm ∥f∥D := E[f(D)2]1/2. We use the same

notation for L2(Z).
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5.1 General Loss and Target Function

We will consider loss functions defined on functions g ∈ L2(Z). For g ∈ L2(Z), z ∈ Z, y ∈ Y , let

ℓ(g; z, y) ∈ R denote the loss. Define the population risk:

L(g) := E[ℓ(g;Z, Y )].

For g, g′ ∈ L2(Z), we will write DL(g)[g′] for the directional derivative of the risk functional L at

g in the direction g′:

DL(g)[g′] :=
d

dt
L(g + tg′)

∣∣∣
t=0

.

We impose the following assumptions on the population risk:

Assumption 1 (Requirements on the Risk). The population risk L(g) satisfies the following properties:

1. L(g) is A-smooth: for all g, g′,

L(g)− L(g′)−DL(g′)[g − g′] ≤ A

2
∥g − g′∥2Z .

2. L(g) is B-strongly convex: for all g, g′,

L(g)− L(g′)−DL(g′)[g − g′] ≥ B

2
∥g − g′∥2Z .

These are standard requirements needed to apply finite-sample empirical risk minimization bounds.

We now define the target estimand of interest (corresponding to the structural function in NPIV)

for this general loss function. Strong convexity and smoothness of the loss from Assumption 1

guarantee the existence of a unique minimizer of the population risk overL2(Z), which we denote:

g0 := argmin
g∈L2(Z)

L(g).

Define the conditional expectation operator T : L2(D) → L2(Z) with:

(T f)(z) = E[f(D)|Z = z].

Then the target function f0 is some function in L2(D) that satisfies the conditional moment equa-
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tion,

T f0 = g0.

While g0 is guaranteed to be unique, the target function f0 need not be the only function in L2(D)

that satisfies this equality.

Example (NPIV Structural Function). The NPIV structural function f0 that satisfies E[f0(D)|Z] =

E[Y |Z] is a special case for the loss function ℓsq(g; z, y) := (y − g(z))2 for g ∈ L2(Z) and corresponding

risk Lsq(g). We have E[Y |Z] is the minimizer of Lsq(g) over L2(Z).

Example (Debiasing Nuisance). Abusing notation slightly by reversing the roles of Z and D, the de-

biasing nuisance function q0 that satisfies E[q0(Z)|D] = α0(D) is a special case for the loss function

ℓrr(α; d) := α(d)2 − 2m(α; d) for α ∈ L2(D) and corresponding risk Lrr(α). We have that the Riesz

representer α0 of the functional θ is the minimizer of Lrr(α) over L2(D).

As these two loss functions are quadratic in their first argument, they both satisfy Assumption 1.

By encompassing both losses in a general framework, the rates of convergence we establish below

for our 2SML algorithm will apply to estimating both nuisances.

5.2 First and Second Stage Function Classes

To formalize the representation learning step from the first stage while accommodating features

ϕ that are potentially infinite-dimensional, we use reproducing kernel Hilbert spaces (RKHS’s)

(Schölkopf and Smola, 2002). For a symmetric, positive semi-definite (PSD) kernel k defined on

Z , let the corresponding RKHS be denoted Hk. We define the first stage function class G ⊆ L2(Z),

with the following requirement:

Assumption 2 (First Stage Function Class).

G ⊆
⋃

k:E[k(Z,Z)]<∞

Hk.

Note that this restriction is extremely weak; for example,
⋃

k:E[k(Z,Z)]<∞Hk contains all continuous

functions (and many discontinuous ones). An important special case that subsumes most machine

learning algorithms is when G is defined over finite-dimensional kernels of a fixed dimension:

Proposition 2. Fix 1 ≤ dϕ <∞. Then,

{g(z) = ϕ(z)⊤β s.t. ϕ : Z → Rdϕ , E[∥ϕ(Z)∥22] <∞, β ∈ Rdϕ} ⊆
⋃

k:E[k(Z,Z)]<∞

Hk.
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Proof. For each ϕ, we can define the kernel k(x, y) = ϕ(x)⊤ϕ(y). Then apply Cauchy-Schwarz.

As concrete examples, this finite-dimensional case would include any neural network with em-

bedding width dϕ and bounded weights, or any gradient boosting ensemble composed of dϕ in-

dividual bounded boosters. These examples cannot be written as a single RKHS because they

choose their basis ϕ adaptively from the data. Our general formulation for G also allows using

an infinite-dimensional RKHS in the first stage (as in Singh et al. (2019)), or performing a kernel-

learning step to adaptively choose between infinite-dimensional RKHS’s (Lanckriet et al., 2004).

These infinite-dimensional settings still have natural feature maps: for a PSD kernel k and corre-

sponding RKHS Hk, there exists a feature map ϕ : Z → Hk with the special property that for any

g ∈ Hk, g(z) = ⟨ϕ(z), g⟩.

Our second stage function class is F ⊆ L2(D).

Assumption 3 (Requirements on the Function Classes). We require that:

1. (Conditions for Minimizers) G and F are non-empty, closed, and convex,

2. (Lipschitz) ℓ(g; z, y) is C-Lipschitz with respect to its first argument over g ∈ G,

3. (Boundedness) supg∈G ∥g∥∞ ≤ 1, supf∈F ∥f∥∞ ≤ 1,

4. (Realizability) f0 ∈ F .

The first condition guarantees the existence of minimizers of the population losses. This could

be replaced with directly asserting the existence of relevant minimizers. The second and third

conditions are used in the arguments for achieving fast rates with empirical risk minimization.

Note that without loss of generality, we can consider functions uniformly-bounded by a constant

instead of 1, but we choose 1 for notational simplicity.

5.3 First and Second Stage Optimization Problems

Now we define the relevant empirical risk minimizers for our 2SML estimator. Our estimator uses

two independent samples of Z,D, Y , one for the first stage with m iid observations, and one for

the second stage with n iid observations. We will use Êm[·] and Ên[·] to denote sample averages for

the first and second sample respectively. We will write the empirical risk: Ln(g) := Ên[ℓ(g;Z, Y )]

and likewise for Lm(g).
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The first stage of 2SML solves the following empirical risk minimization problem in the first sam-

ple with m observations:

ĝ ∈ argmin
g∈G

Lm(g).

By construction, there exists a PSD kernel k̂ with E[k̂(Z,Z)] < ∞, and a corresponding RKHS Hk̂

such that ĝ ∈ Hk̂. Let ϕ̂ : Z → Hk̂ be the corresponding feature map.

Next, we formally define the projection part of the projected loss minimization framework. We

define the operator Tϕ̂ : L2(D) → Hk̂:

Tϕ̂f := argmin
g∈Hk̂

{E[(f(D)− g(Z))2]}.

Equivalently, Tϕ̂f is the projection in the L2(Z) norm of E[f(D)|Z] onto Hk̂. We also define the

sample version of this operator. Let ∥ · ∥Hk̂
denote the usual Hilbert space norm for Hk̂. Define the

norm ball of radius b, Hb
k̂
:= {g ∈ Hk̂ : ∥g∥Hk̂

≤ b}. Then define,

T̂ϕ̂f := argmin
g∈Hb

k̂

{Ên[(f(D)− g(Z))2]}. (15)

In practice, instead of the constrained form with radius b, we implement the operator T̂ϕ̂ using

the equivalent penalized form with hyperparameter λ. This has the advantage of being easily

computable in closed-form with the familiar projection matrix from Algorithm 1 (see Appendix A

for the closed-form solution in an infinite-dimensional RKHS).

We impose the following requirements on the kernel k̂ and the norm radius b:

Assumption 4 (Regularity Conditions on Hb
k̂
). We impose the following conditions:

1. The loss ℓ(g; z, y) is C-Lipschitz on Hb
k̂
,

2. supg∈Hb
k̂

∥g∥∞ ≤ 1,

3. The radius b is sufficiently large such that Tϕ̂f0 ∈ Hb
k̂
.

The first two requirements are standard boundedness assumptions required for our empirical risk

minimization results. They would be satisfied, for example, with ℓ(g; z, y) = (g(z) − y)2 when k̂

is continuous and Z is compact. The third condition is a realizability condition to streamline the

presentation of our main results — we demonstrate how to relax this assumption in Appendix C.3.

21



To construct our final estimate of the target function, the second stage of 2SML solves the following

empirical risk minimization problem in the second sample with n observations:

f̂ ∈ argmin
f∈F

Ln(T̂ϕ̂f).

5.4 Convergence in the Weak Metric

Following the previous NPIV literature as in Newey and Powell (2003) and Dikkala et al. (2020),

we first prove convergence in the weak metric — ∥T (f̂ − f0)∥Z — and then in Section 5.5 impose

additional conditions to establish convergence in the strong metric — ∥f̂ − f0∥D.

We use nonasymptotic techniques to establish high-probability bounds on the error. The bounds

(and resulting rate of convergence) depend on the complexity of the function classes involved.

The measure of complexity we adopt is the critical radius, a standard tool from statistical learning

theory; see Wainwright (2019) and Foster and Syrgkanis (2023) for a review. Define the local

Rademacher complexity (Bartlett et al., 2005) for a function class A ⊆ L2(Z), sample size n, and

radius δ ≥ 0:

Rn(A, δ) := E

[
sup

g∈A:∥g∥Z≤δ

∣∣∣∣∣ 1n
n∑

i=1

ϵig(zi)

∣∣∣∣∣
]
,

where the expectation is taken over both independent Rademacher random variables ϵ1, ..., ϵn,

and over n iid observations of Z, z1, ..., zn. The critical radius, δn, of the class A with sample size

n is the smallest solution to the inequality:

Rn(A, δ)
δ

≤ δ. (16)

We are now ready to state our main result.

Theorem 1 (Weak Convergence of 2SML with General Loss). Let δbn be an upper bound on the critical

radius of Hb
k̂
. Given Assumptions 1, 2, 3, and 4, with probability at least 1− 2η we have:

∥T (f̂ − f0)∥Z ≤ O

(
∥ĝ − g0∥Z + δbn +∆ϕ̂ +

√
log(1/η)

n

)
,

where:

∆ϕ̂
:= L(T f̂)− L(T̂ϕ̂f̂).

The first two terms in the bound are: (1) the first-stage error, (2) the complexity of the projection
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step. Terms (1) and (2) depend on the complexity of the function class G. We will discuss concrete

rates for these terms next, but first we comment on the third term, ∆ϕ̂, which is essentially a

measure of whether ridge regression of f̂(D) on ϕ̂(Z) is a good approximation of E[f̂(D)|Z].

We need ∆ϕ̂ to be less than or equal to zero asymptotically to guarantee convergence of f̂ :

Assumption 5. ∆ϕ̂ ≤ 0.

This condition is testable from the data without knowledge of the true target function f0. We

describe a feasible permutation test in Appendix C.4. A sufficient condition is that ridge regression

in ϕ̂(Z) is the best mean-squared predictor of f̂(D). By construction this is guaranteed to be

true for f0, but it must also hold for f̂ . We find in practice that when we fit the reduced form

using gradient-boosted trees and take ϕ̂ to be the output of each individual tree in the ensemble,

Assumption 5 always holds, both in our synthetic datasets in Section 6, and on the real world

datasets from Compiani (2022) and Card (1995). However, Assumption 5 can fail to hold for other

function classes when ϕ̂ is too simple relative to F — one such example is when ϕ̂ is chosen to

be the 1-dimensional basis ϕ̂(z) = ĝ(z). We also find violations of Assumption 5, when ϕ̂ is a

sparse Lasso basis and the regularization hyperparameter is chosen to be too high. We find that

undersmoothing the Lasso prevents these violations in practice.

We now turn to establishing rates of converges for the first two terms, ∥ĝ − g0∥Z and δbn. The term

∥ĝ− g0∥Z is the L2 error of the first stage, which can be controlled using any off-the-shelf machine

learning result that provides a rate of convergence. This includes results giving rates without the

critical radius machinery — for a recent example using boosting see Luo et al. (2025). Note that

since we estimate ĝ using the first sample, the rate of convergence depends on m. Very often these

rates take the form O

(
d
√

logm
m

)
, where d is some measure of the “dimension” of the machine

learning algorithm.

For completeness, we provide a standard critical radius bound for the first stage. Define the star

hull of a set A as star(A) := {αg|g ∈ A, α ∈ [0, 1]}.

Proposition 3 (First Stage). Let g∗ be the minimizer of L(g) over G. Let δGm be an upper bound on the

critical radius of star(G − g∗). Given Assumptions 1 and 3, with probability at least 1− η:

∥ĝ − g0∥Z ≤ O

(
min
g∈G

∥g − g0∥Z + δGm +

√
log(1/η)

m

)
.

The second term in Theorem 1, δbn is the critical radius of the Hilbert space ball Hb
k̂
. Critical radii
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for different kernels have been extensively characterized, see for example Bartlett et al. (2005);

Wainwright (2019). Note that k̂ is chosen through the first stage, and so δbn depends on G. We now

provide a specific example of G with rates of convergence for the first two terms in Theorem 1.

Example (Tree Ensembles): Suppose we can achieve zero approximation error, i.e. g∗ = g0, when

G is the set of all tree ensembles composed of a convex combination of T individual trees. Any

g ∈ G can be written as a linear function of T trees, satisfying the conditions in Proposition 2

with dϕ = T . For concreteness, we can apply the result from Syrgkanis and Zampetakis (2020) for

individual trees with t leaves and d binary input features to get:

δGm ≤ O

(√
Tt log(dt) log(m)

m

)
.

This is a typical result for the complexity of trees — compare to Theorem 1 from Li et al. (2024).

For the second stage, we have Hb
k̂

is a subset of all linear functions of the features ϕ̂with dimension

T , and so using standard results (Wainwright, 2019), we can take:

δbn ≤
√
T

n
.

Putting these together with Assumption 5, we get:

∥T (f̂ − f0)∥Z ≤ Op

(√
Tt log(dt) log(m)

m
+

√
T

n

)
.

The rate is dominated by the first term, the complexity of the reduced form prediction task. If we

begin with N total samples split evenly, then f̂ converges at rate
√
log(N)/N , which importantly

is fast enough to satisfy the rate requirements for valid inference in the next section.

Remark 1. If the testable condition Assumption 5 holds, then our error bound depends entirely on the

difficulty of the reduced-form prediction task. In practice, we use gradient-boosted trees. However, previous

NPIV estimators including Newey and Powell (2003), Singh et al. (2019), and Chen et al. (2023) can

be written as special cases of the empirical risk minimization setup from Section 5.3. In particular, they

correspond to the case where G is a single RKHS with a given kernel. Therefore, when Assumption 5 holds,

they inherit our error bound based on the reduced form. In the settings we consider, gradient-boosted trees

provide much better predictions for the reduced form than sieve or kernel function classes. This may partially

explain our method’s superior performance in practice.
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5.5 Inference for Linear Functionals with Debiasing

We now provide inference guarantees for the estimand from Section 4: the linear functional θ0 :=

θ(f0) where f0 is the NPIV structural function, and where the debiasing nuisance for θ is q0.

Let f̂ and q̂ be estimates that solve the second-stage optimization problem in Section 5.3 for the

squared loss ℓsq and the Riesz loss ℓrr respectively. For f̂ let the first stage function class be Gsq, the

second stage function class be Fsq, the learned features be ϕ̂ and the norm ball in the corresponding

RKHS be Hb1
ϕ̂

. For q̂, define Grr,Frr, φ̂, and Hb2
φ̂ in the same way. Assume that Assumptions 2, 3, 4,

and 5 hold for both. Applying Theorem 1 to the two nuisance estimates f̂ and q̂, we can establish

asymptotic normality and valid inference for the debiased point estimate (12). In what follows we

will write TD→Z(f) for E[f(D)|Z] and TZ→D(q) for E[q(Z)|D].

Consider the debiased point estimate θ̂D from (12) and variance σ̂2 from (14) formed using the

two nuisance estimates f̂ and q̂. Chernozhukov et al. (2023) show, under standard regularity

conditions (i.e. boundedness of certain moments, described in Appendix C.5), that if the following

rate conditions hold:

1. ∥f̂ − f0∥D = op(1),

2. ∥q̂ − q0∥Z = op(1),

3. min( ∥TD→Z(f̂ − f0)∥Z∥q̂ − q0∥Z , ∥f̂ − f0∥D∥TZ→D(q̂ − q0)∥D ) = op(n
−1/2),

then we have asymptotic normality:

√
n(θ̂ − θ0)

d−→ N (0, σ2), and σ̂2
p−→ σ2,

where σ2 is the variance of the efficient influence function. Therefore, for a ∈ [0, 1], we get a valid

confidence interval:

P{θ0 ∈ θ̂ ± caσ̂n
−1/2} → 1− a,

where ca is the (1 − a/2)-quantile of the standard normal distribution. Condition 3 is the usual

product rate requirement, but allowing a mix of convergence in the strong metric and the projected

weak metric. We rely on existing results to relate the weak metric, ∥TD→Z(f̂ − f0)∥Z to the strong

metric ∥f̂ − f0∥D and similarly for q̂. Chen and Pouzo (2012) introduce the measure of ill-posedness
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with respect to the function class F :

τ := sup
f∈F

∥f − f0∥D
∥TD→Z(f − f0)∥Z

.

If τ is bounded, the error in the strong metric is controlled by:

∥f̂ − f0∥D ≤ τ∥TD→Z(f̂ − f0)∥Z .

Other work use different techniques to secure convergence in the strong metric, like combining

Tikhonov regularization and a source condition assumption Bennett et al. (2023); Li et al. (2024). A

similar analysis could be applied here, but we use bounded measure of ill-posedness for simplicity.

Proposition 4. The following conditions on f̂ and q̂ are sufficient for the rate conditions from Cher-

nozhukov et al. (2023) to hold:

1. Either f0 or q0 has bounded measure of ill-posedness, i.e.

min

(
sup
f∈Fsq

∥f − f0∥D
∥TD→Z(f − f0)∥Z

, sup
q∈Frr

∥q − q0∥Z
∥TZ→D(q − q0)∥D

)
≤ τ <∞;

2. If one of f0 or q0 does not have a bounded measure of ill-posedness, the corresponding nuisance

estimate must still converge in the strong metric but possibly at an arbitrarily slow rate;

3. The function classes Gsq,Grr,Hb1
ϕ̂
,Hb2

φ̂ satisfy the product rate condition,

max{δb1n , ∥ĝ − g0∥Z} ·max{δb2n , ∥α̂− α0∥D} = op(n
−1/2).

Proof. By applying Theorem 1 we get ∥TD→Z(f̂−f0)∥Z = Op(δ
b1
n +∥ĝ−g0∥Z+n−1/2) and ∥TZ→D(q̂−

q0)∥D = Op(δ
b2
n + ∥α̂− α0∥D + n−1/2). If either has bounded measure of ill-posedness, then either

∥f̂ − f0∥D or ∥q̂ − q0∥Z inherits the same rate, so we satisfy Condition 3. If the other does not

satisfy any bounded measure of ill-posedness, then we still require that the nuisance converge in

the strong metric, but possibly at a much slower rate than the weak metric convergence provided

by Theorem 1.

Remark 2. The conditions in Proposition 4 are sufficient but not necessary to achieve the product rate

requirement. For example, consider a setting where Theorem 1 would guarantee that both nuisances achieve

a typical convergence rate of
√
log n/n in the weak metric, but that in the strong metric, that rate falls to

n−1/6. The rate conditions for asymptotic normality are still satisfied. This is similar to the inference results
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for sieves under ill-posedness in Chen and Pouzo (2015).

Remark 3. The inference guarantees in Bennett et al. (2022) don’t require any kind of ill-posedness con-

trol, however, they require a stronger identification condition on θ(f0) than the existence of q0 such that

E[q0(Z)|D] = α0(D). In their setup, they minimize the Riesz loss, but using a slightly different projection

scheme, which they solve using a minimax formulation. In future work, a straightforward extension would

be to solve for their proposed debiasing nuisance using our algorithm.

6 Evaluation in Simulation

We evaluate our 2SML procedure in three ways. First, we can directly assess how well we mini-

mize the NPIV objective (4) out-of-sample using real data from IV applications. This doesn’t re-

quire access to the true structural function. We defer this evaluation to our empirical application

in Section 7.

In this section, we use synthetic and semi-synthetic data to evaluate 2SML in two ways that do

require ground-truth access to the true structural function. First, we use a semi-synthetic setup

to evaluate how well our estimate of the structural function f̂ uniformly approximates the true

structural functional using the metric ∥f̂ − f0∥D. This is a goal unto itself if we care about accu-

rately capturing the heterogeneity in f0, or counterfactual prediction. The mean squared error for

estimating f0 also translates directly into the size of the confidence interval for linear functional

estimands. We show that 2SML with gradient boosted trees achieves out-of-sample R2 improve-

ments of around 0.1 and 0.15 in two novel IV benchmarks based on real-world datasets.

Second, we perform a coverage simulation for inference on the average derivative of f0. Here we

use a non-linear synthetic setup but with parameterizable dependence between the treatment and

covariates that controls whether the parameter of interest is well-identified. In the well-identified

case, our debiasing procedure improves coverage from 69.6% (without debiasing) to 94.4%. In a

very poorly-identified setting, our debiased confidence interval undercovers slightly at 88.4%, as

expected theoretically (Dorn, 2025), but this is an enormous improvement over the 3.6% coverage

without debiasing.

6.1 Semi-Synthetic Evaluation of the Structural Function Estimate

NPIV methods are often benchmarked on purely synthetic data. These are typically low dimen-

sional, and use hand-designed functional forms with limited heterogeneity — see for example
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the commonly-used conference demand problem from Hartford et al. (2017). In these simple set-

tings, there is often no advantage to using a complex model like gradient boosted tree ensembles

compared to a sieve or kernel ridge model; the strength of tree ensembles lies in their excellent

predictive performance on complicated real-world datasets. A few papers use high-dimensional

designs with images as treatment (Bennett et al., 2019; Dikkala et al., 2020; Xu et al., 2020), but

these designs are not representative of typical economics data in IV applications.

We design two semi-synthetic benchmarks using real data on taxi fares and house prices from

Grinsztajn et al. (2022). These are so-called “tabular” datasets (where each observation has a mix

of numerical and categorical attributes) typical of economics applications. Our basic approach

is to take an existing prediction task, and split it into a training sample and an test sample. We

choose one highly predictive attribute as the endogenous variable (“the treatment”), and then add

correlated noise to both that variable and outcome in the training sample. Transformations of

the original “treatment” variable (before the noise is added) serve as valid instruments. In this

way, we can make sure that the assumptions underlying NPIV are met, without having to specify

the relationship between treatment, covariates and outcomes. In practice, these relationships fea-

ture complicated heterogeneity that requires machine learning methods to model sufficiently. Our

benchmark task is to fit an IV model in the endogenous training sample and predict on the un-

confounded test sample — the prediction squared error on the test sample is equal to the L2 error

for the structural function up to a constant. We give describe how we construct the benchmarks

in Appendix E.1. We provide a brief summary of our two settings in Table 3.

We compare 2SML using gradient-boosted trees in the first and second stages (GBoost 2SML)

against several baselines: a naive ML estimator ignoring the instrument; classic linear two-stage

least squares; Kernel IV from Singh et al. (2019); Ensemble IV, a minimax method proposed in

Dikkala et al. (2020) using random forests; and an oracle estimator that gets direct access to the

unconfounded outcomes. The results are summarized in Table 4. Gboost 2SML substantially out-

performs the other methods. Notice that the performance of the minimax random forest method

EnsembleIV is unstable, collapsing in the Census Housing task.

Table 3: Dataset Characteristics

Dataset Train Samples Test Samples Outcome Variable # of Features
NYC Green Cab 406,600 174,258 Log Taxi Fare 16
Census Housing 15,948 6,836 Log Median House Price 16
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Table 4: Out-of-Sample R2

Dataset Naive ML 2SLS Kernel IV Ensemble IV GBoost 2SML Oracle
NYC Green Cab -0.07 0.53 0.52 0.57 0.72 0.86
Census Housing 0.14 0.18 0.43 -0.01 0.53 0.80

Notes: Each estimator is fit in the training sample, and R2 values are computed in the hold-out sample. Naive ML
is a GBoost model fit ignoring endogeneity. The Oracle estimator is GBoost model fit with endogeneity removed,
representing an upper bound on predictive performance of any IV estimator.

6.2 Simulation Results for Coverage

We perform purely-synthetic Monte Carlo simulations to assess coverage of our asymptotic nor-

mal confidence intervals using 2SML with and without debiasing. Our results demonstrate that

plug-in IV models without bias correction can dramatically undercover, whereas our debiasing

procedure recovers correct coverage. We design an average derivative estimation task with an

endogenous non-linear outcome and with non-linear dependence between the treatment, instru-

ment, and covariates. The strength of the dependence between treatment and covariates induces

a non-parametric form of multi-collinearity, allowing us to vary the degree of identification for the

average derivative parameter (similar to controlling overlap for the average treatment effect). We

describe our data-generating process in Appendix E.2.

We run Monte Carlo simulations with n = 2000 repeated for 250 trials. We focus on two set-

tings: (1) a setting with moderate dependence between treatment and covariates resulting in a

challenging but well-identified estimation task, and (2) a setting with strong dependence between

treatment and covariates such that the average derivative is very poorly-identified. This poorly-

identified setting is intended to be a particularly challenging case where even a debiased estimator

should fail to achieve perfect coverage — see Kang and Schafer (2007); Dorn (2025) and similar.

We provide point estimates and 95% confidence intervals for two estimators: a 2SML model with-

out debiasing; and a debiased estimate where both nuisances are fit with 2SML. We summarize

the results in Table 5.

In the well-identified setting, the 2SML plug-in (without debiasing) significantly undercovers,

with only 70% of the confidence intervals containing the true parameter. The debiased 2SML esti-

mate restores correct coverage while simultaneously achieving a small improvement in RMSE for

the target estimand. In the poorly-identified setting, the coverage of the 2SML plug-in collapses

to 3.6%, while the debiased estimator achieves coverage of 88.4%, even in this especially challeng-

ing case. Note that here the RMSE for the plug-in and debiased estimates are roughly the same;
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instead, the improved coverage for Debiased 2SML is achieved through a nearly 4x increase in the

standard error, more accurately reflecting the true amount of uncertainty.

Table 5: Monte Carlo Results for Average Derivative Estimation Task

Method
Well-Identified Setting Poorly-Identified Setting

Bias Std. Err. RMSE Coverage Bias Std. Err. RMSE Coverage
Plug-in 2SML -0.029 0.024 0.044 0.696 -0.094 0.022 0.098 0.036

Debiased 2SML -0.010 0.036 0.038 0.944 -0.056 0.079 0.101 0.884

Notes: Metrics averaged over 250 trials with n = 2000. Coverage is for the 95% confidence interval. Dependence
between treatments and covariates generates a non-linear form of multicollinearity. In the “Well-Identified Set-
ting”, this dependence is moderate, and in the “Poorly-Identified Setting”, this dependence is strong.

7 Empirical Application: Demand Estimation

We now present an empirical application to demand estimation using the California supermarket

data from Compiani (2022), where consumers choose between organic strawberries, non-organic

strawberries, and an outside option (other fresh fruits). A key characteristic of this dataset is

bunching at 9-ending price points, as illustrated in Figure 1. Of our observations on organic

strawberries, have prices ending in 0.99, and have a price of exactly per pound.

We will demonstrate that our non-parametric approach using tree ensembles is especially valuable

in this setting, achieving a nearly 7x reduction in NPIV estimation error compared to the best

prior method. Our model captures strong discontinuities at the dollar boundary, resulting in

an estimated price elasticity of , between 2.5-6x larger than the estimates previously reported

in Compiani (2022) and Chen et al. (2023) using the same dataset. The tendency of prices to

bunch at 9-endings is widely-documented, so while our application is to strawberry demand, the

takeaways should be more broadly applicable.

Figure 1: Counts of Price Per Pound for Organic Strawberries
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We use our debiased 2SML procedure to estimate the price elasticity of demand for organic straw-

berries by estimating the average derivative following the specification in Chen et al. (2023). All

observations are at the store-week level. Y ∈ R is the log market share for organic strawberries,

D ∈ R2 are the log prices for organic and non-organic strawberries, and X ∈ R4 are covariates

including: income, taste for organic products,7 state-level sales of other fruit, and average price of

other fruit. The instruments Z ∈ R5 include 3 Hausman IVs (average prices at stores not in the

same marketing area), and spot prices for organic and non-organic strawberries. See the online

Appendix of Compiani (2022) for a complete description of the construction of the dataset. The

own-price elasticity of organic strawberries is E[∂f0(D1, D2, X)/∂D1].

Note that our primary goal is to match the setup of Chen et al. (2023) as closely as possibly, in order

to directly compare the results for identical estimands. However, we recognize there are potential

limitations of this setup from an applied point of view. For example, we require endogeneity to

enter additively, which may be inconsistent with theoretical microfoundations (Berry and Haile,

2016), and we use Hausman instruments, which place strong independence assumptions on un-

observables across markets. We leave further exploration of demand estimation in particular to

future work. Finally, Chen et al. (2023) use a differentiable model and compute the derivative an-

alytically. By contrast, our best fitting model using GBoost has strong discontinuities at the dollar

boundary. Furthermore, the price distribution itself is partly discrete — most prices per pound

are in round cents, like .8 Therefore, we calculate the derivative with symmetric differencing:

E[(f0(D1 + ϵ,D2, X) − f0(D1 − ϵ,D2, X))/2ϵ] with ϵ = 0.01 (large enough to be at least 1 cent

for all observations). If we believe the true demand function is discontinuous, then this ϵ-shock

response could itself be considered a valid estimand. We consider alternative specifications in the

Appendix.

7.1 Estimation Error for GBoost 2SML vs Previous Methods

Two-Stage Machine Learning with tree ensembles provides a substantially better estimate of the

structural function than existing methods. We demonstrate this using an out-of-sample measure

of the NPIV estimation error. Recall that the structural function is the solution to the nested regres-

sion problem (4). Minimizing this objective over f ∈ F directly is challenging because for each

candidate f , we have to estimate E[f(D)|Z = z]. However, for any given candidate f̂ , estimating

E[f̂(D)|Z = z] is straightforward: we train a machine learning model to predict f̂(D) given Z.

7The percentage of total yearly sales of lettuce that are organic at the store.
8Although some are not, like .
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Table 6: Comparison of Estimation Error Across NPIV Estimators

Estimator NPIV MSE NPIV R2 MSE vs E[Y |Z]
Our method GBoost 2SML

Without trees

2SLS
Sieve IV (Newey and Powell, 2003)

Kernel IV (Singh et al., 2019)
Deep IV (Hartford et al., 2017)

Deep Feature IV (Xu et al., 2020)

With trees
GBoost/Spline (Chen et al., 2023)
Ensemble IV (Dikkala et al., 2020)

Notes: “NPIV MSE” is the value of (17) averaged over test folds with cross-fitting. “NPIV R2” is the corresponding
R2 value. The best achievable value for (17) by any NPIV method is the MSE of the reduced form, which is .
The column “MSE vs E[Y |Z]” shows how close each method is to achieving that optimal value. The true structural
function will achieve approximately 0.

Call this estimate, T̂ f̂ . We can then get an estimate of the objective from (4), by computing:

n∑
i=1

(Yi − (T̂ f̂)(Zi))
2. (17)

Because T̂ f̂ is a function of Z, the best possible value of (17) achievable by any f̂ is the MSE

of E[Y |Z]. Furthermore, because E[Y |Z] = E[f0(D)|Z], we know that this best possible MSE is

achieved by the true f0. This suggests a simple end-to-end procedure: we estimate T̂ f̂ for a set

of NPIV estimates, and then in a separate sample compare their MSEs to that of the best reduced

form predictor. For a good estimate of the structural function, the difference should be nearly zero.

We perform this procedure with 4-fold cross-fitting on our dataset for organic strawberries. In

each training fold, we compute estimates f̂ for a variety of NPIV estimators including our 2SML

method with GBoost. We compare our method against 2SLS, Sieve IV and Kernel IV, which are

linear in a fixed feature transformation; Deep IV, which solves a conditional density estimation

problem in the first stage; Deep Feature IV, an iterative method using deep neural networks; the

spline minimium distance method from Chen et al. (2023), using a gradient-boosted tree ensemble

to represent f0; and Ensemble IV, an adversarial/minimax method using tree ensembles. For each

f̂ , we estimate the corresponding T̂ f̂ using machine learning (picking the best model by cross-

validation within the training fold).9 We then compute (17) in the test fold. We show the results

averaged across the four folds in Table 6.

9If f̂ was fit with Kernel IV for example, the model for E[f̂(D)|Z] selected via cross-validation need not be a kernel
ridge model. Indeed, we find for f̂ fit using Sieve IV and Kernel IV, the best predictor for f̂(D) given Z in our demand
dataset is a tree ensemble. This again emphasizes that the sieve/kernel bases are misspecified.
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The key measure of success is the rightmost column, which compares the value of (17) to the best

achievable value — the reduced form MSE of . The true structural functional would achieve

a value of approximately zero. Our GBoost 2SML estimator achieves a nearly seven-fold reduction

in MSE vs E[Y |Z] compared to the next best method, the GBoost/Spline estimator following Chen

et al. (2023). This corroborates our finding in Table 2 that a spline basis cannot sufficiently model

E[f0(D)|Z] in this dataset. The minimax estimator, Ensemble IV, from Dikkala et al. (2020) has over

8x the estimation error of our approach. Note that even though Ensemble IV uses tree ensembles

for both the structural function and the instruments, it does not perform as well as the simpler two-

stage GBoost/Spline approach, highlighting the limitations of adversarial approaches. Chen et al.

(2023) report a similar finding. The remaining methods that do not use tree ensembles perform

even worse. Sieve and Kernel IV have 10x higher estimation than our method. Notably, the neural

network-based approaches Deep IV and Deep Feature IV perform particularly poorly.

7.2 GBoost 2SML Estimates a Much Higher Price Elasticity

Our debiased point estimate for the average price elasticity is . This is roughly larger

than the elasticity estimate of −5.5 reported in Compiani (2022), and larger than the elasticity

estimates in Chen et al. (2023), which range from −2.2 to −3.4. In Table 7, we compare our debi-

ased estimate with the plug-in estimates from the models in Table 6. Note that for smooth meth-

ods — like 2SLS, Sieve IV, and Kernel IV — the estimate of the price elasticity is around .

By contrast, the price elasticities estimated using tree ensembles are substantially higher. The

GBoost/Spline and Ensemble IV estimates are around : higher than the smooth estimates,

but still smaller than our point estimate of , and falling below our 95% confidence interval.

Note that the neural network approaches (which perform particularly poorly in Table 6) estimate

an elasticity as low as .

We find that our point estimate is mainly driven by discontinuities at the dollar boundary, which

gradient-boosted tree ensembles excel at modeling. In Figure 2, we plot how our 2SML estimate

of the price elasticity varies with own-price. We find large negative price elasticities at 99-endings.

For example, of all our observations have a price of exactly . Among just these obser-

vations, our estimated price elasticity is around . This estimate is inline with existing studies

on 99-ending prices. For example, Schindler and Kibarian (1996) find at a clothing retailer that 99-

ending prices had 8% more sales volume than 00-ending prices. To compare magnitudes, note that

at , a change to is a difference. Thus an 8% change in demand would correspond
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Table 7: Estimated Own-Price Elasticities for Organic Strawberries

Estimator Price Elasticity Debiased Price Elasticity

Our method
GBoost 2SML

Without trees

2SLS
Sieve IV
Kernel IV
Deep IV
Deep Feature IV

With trees
GBoost/Spline
Ensemble IV

Notes: Estimates are average price elasticities using 4-fold cross-fitting. The top of the table contains
our main estimate with debiased standard errors clustered at the store level. The bottom of the table
includes plug-in estimates across other NPIV methods.

to a price elasticity of .

Notice that in Figure 2 there is consistently a positive price elasticity leading up to the 99-endings.

We estimate that changing prices from actually increases demand. This corrobo-

rates the finding in Snir and Levy (2021) that shoppers perceive 9-ending prices as being lower

than non-9-ending prices, even though this is not actually the case on average. This could be evi-

dence for violations of profit maximization, but there are alternative explanations — for example,

99-endings may signal lower quality, there may be regulatory restrictions, or there may exist unob-

served confounders that violate the spacial independence assumption of Hausman instruments.

7.3 Why is the 2SML Standard Error So Large?

Our debiased point estimate of for the own-price elasticity comes with a fairly large stan-

dard error of . The resulting 95% confidence interval is . The large standard

error is due to the debiasing step. By contrast, the naive standard error for the 2SML plug-in

estimate of is (although this estimate is biased and so the standard error is not asymp-

totically valid).

The debiasing nuisance q̂(Zi) directly models how sensitive the final point estimate is to each ob-

servation. In the bias correction term, the debiasing nuisance is then multiplied by the prediction

residuals of the structural function: q̂(Zi)(Yi − f̂(Di)). When q̂(Zi) can take on extremely large

values, then our variance and standard errors can drastically increase. We find that the averaged

squared value of q̂(Zi) is , and this is largely driven by observations right above 9-ending

price points. For example, the average squared value of q̂(Zi) for observations with price between
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Figure 2: Own-Price Elasticity for Organic Strawberries
Notes: Average price elasticities within own-price bins for the structural function estimated using two stage
machine learning with gradient-boosted trees. Bin size was chosen relative to ϵ = 0.01 used for symmetric
differencing. The x-axis values are the center of the bins.

Table 8: Elasticity Estimates Under Small Perturbations to Price

Noise Std. Debiased 2SML Elasticity (s.e.) Sieve IV Elasticity

None
1e-3
5e-3
1e-2

Notes: Each row corresponds to a reanalysis with small mean-zero Gaussian noise added to the log own-price.
Noise Std.” is the standard deviation of the noise. Since the noise is added to log prices, 1e-3 corresponds to a
0.1% change. The noise is small enough that smooth models like Sieve IV are nearly unaffected.

is . To understand what is going on, note that because a large percentage

of the observations have prices bunched at price points with 9-endings like , the estimate

of the price elasticity is highly sensitive to observations with prices just above these price points.

However, there are observations with prices in the range — see Figure 1 —

meaning that we have a small effective sample size for estimating the discontinuity at the dollar.

This is not a mistake or limitation of our method, but a reflection of the underlying high uncer-

tainty.

Finally, we perform a simple perturbation experiment that cleanly illustrates the extent to which

our large point estimate and large standard errors are driven by discontinuities at price points. In

this experiment, we add a small amount of noise to the log price of organic strawberries in the
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training data, erasing information at the discontinuities. The estimand under noise can be inter-

preted as a smoothed version of the original estimand. The amount of noise is so small relative

to the total variation in the data that classical attenuation bias is not a concern — in fact the es-

timate of the elasticity using Sieve IV barely changes over the levels of noise we consider. We

collect the results in Table 8. As we add more noise to price, our debiased estimate of the price

elasticity falls to around — in line with the estimates from smooth models like Sieve IV and

2SLS from Table 7. The size of the standard error drops from to . The noise added to

price improves identification (for the smoothed estimand) by shrinking the size of q̂(Zi), which

was previously driven by the discontinuity at the dollar. Intuitively, the smoothed version of the

elasticity estimand is better-identified because there is plenty of global variation in prices.

8 Conclusion

In this paper, we introduced Two-Stage Machine Learning, a simple nonparametric IV procedure

that uses machine learning models for both the structural function and the instruments. This con-

trasts with existing estimators, which either (1) impose a linearity assumption in a fixed sieve or

kernel basis, or (2) solve computationally-intensive iterative optimization problems with conver-

gence issues that limit their effectiveness. Our key insight is that we can use the reduced form to

learn strong instruments for the structural function. Our first stage learns a basis of instruments by

predicting Y given Z,X , and in the second stage we estimate the structural function by predicting

Y given D,X , projected onto this basis. We prove finite-sample convergence guarantees for our

estimated structural function, and develop a complimentary debiasing procedure that provides

valid asymptotic normal inference for scaler summaries like an average elasticity.

We revisit a demand estimation application using California supermarket data that features ex-

tensive bunching at price points: of all observations end in 0.99. We show that our

procedure with tree ensembles achieves a nearly 7x reduction in NPIV estimation error compared

to the best prior approach. In particular, tree methods excel at modeling discontinuities, and we

find a strong response at the dollar boundary, resulting in an estimated average price elasticity

of around . This is between 2.5 to 6 times larger than estimates previously reported in the

literature using this same dataset.

Our methodology presents opportunities to revisit classic two stage least squares applications us-

ing large administrative datasets and machine learning. A number of extensions to our approach
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would be useful across applied settings. First, our debiasing approach applies to scalar estimands,

but could be extended to debias conditional average treatment effects. Second, it would be inter-

esting to adapt our method to settings with very strong time-series dynamics that are common in

macroeconomics. Finally, we find that using the output of each tree in a gradient-boosting ensem-

ble works especially well in our second stage, but there may be other ways to construct a basis

from the ensemble. It would be interesting to develop a better theoretical characterization of the

corresponding induced Hilbert spaces. We leave these directions for future work.
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A Computing Projections in an RKHS

The 2SML algorithm involves computing the projection Pϕf , where f ∈ Rn is the vector with

elements f(Di) for i ∈ {1, ..., n}, and where

Pϕ = Φ(Φ⊤Φ+ λI)+Φ⊤.

When dϕ is greater than n, including infinite-dimensional ϕ, then we can still efficiently compute

Pϕ using the kernel matrix. Consider an RKHS Hk with PSD kernel k : Z × Z → R and corre-

sponding features ϕ(Z) ∈ Hk. Let K be the n× n matrix with entries k(zi, zj). Then for λ > 0:

Pϕ = K(K + λI)+

When λ = 0, K need not be invertible, but we can instead adopt the minimum-norm solution by

replacing the inverse with the pseudoinverse as in e.g. Bartlett et al. (2020).

B Counterfactual Feature Derivation

Following the derivation for (5), let Tφ denote the operator that maps q ∈ L2(Z) onto the best ap-

proximation of the conditional expectation E[q(Z)|D] that is linear in φ. In other words (Tφq)(d) =

φ(d)⊤β(q), where

β(q) := argmin
β∈Rdφ

E[(q(Z)− ϕ(D)⊤β)2].

The projected Riesz loss in the population is:

min
q∈Q

E[(Tφq)(D)2 − 2m(Tφq,D)]

= min
q∈Q

E[(φ(D)⊤β(q))2 − 2m(φ(·)⊤β(q), D)]

= min
q∈Q

E[(φ(D)⊤β(q))2 − 2m(φ,D)⊤β(q)],

where in the last line we’ve used the fact that E[m(f,D)] is a linear operator on f ∈ L2(D).

For the sample optimization problem, recall the shorthand definitions from the main text: let

φ ∈ Rn×dφ be the matrix with rows φ(Di), and let φcf ∈ Rn×dφ , be the matrix with rows equal to

m(φ,Di). Let φ̄cf ∈ Rdφ be the sample average of φcf. Write q for the vector with entries q(Zi).
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Then we have:

β̂(q) = (φ⊤φ+ λI)φ⊤,

and so the sample optimization problem is:

min
q∈Q

{ 1
n
q⊤Pφq − 2Pcfq

}
. (18)

C Details for Theoretical Results

C.1 Empirical Risk Minimization Lemma

The following lemma is adapted from Bartlett et al. (2005); Foster and Syrgkanis (2023). Define the

star hull of a set G as star(G) := {αg|g ∈ G, α ∈ [0, 1]}.

Lemma 1. Let A and B be function classes with A ⊆ B ⊆ L2(Z) such that supb∈B∥b∥∞ < ∞. Let

â ∈ A be any function satisfying Ln(â) = infa∈A Ln(a) and let a∗ ∈ A be any function satisfying

L(a∗) = infa∈A L(a). Given Assumption 1 and assuming that ℓ(g; z) is C-Lipschitz with respect to its

first argument over B, for any δn satisfying the inequality:

Rn(star(B − a∗), δ)

δ
≤ δ,

then with probability at least 1− η, with constants that depends only on C and B:

∥â− a∗∥Z ≤ O

(
δn +

√
log(1/η)

n

)
.

Proof. We have

∥â− a∗∥22 ≤ B(L(â)− L(a∗))

≤ B((L(â)− L(a∗))− (Ln(â)− Ln(a
∗))),

where the last line follows because Ln(â)− Ln(a
∗) ≤ 0.

Define: δ = δn +
√

log(1/η)/n. Then applying Lemma 12 of Foster and Syrgkanis (2023), with
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probability at least 1− η:

(L(â)− L(a∗))− (Ln(â)− Ln(a
∗)) ≤ O(δ∥â− a∗∥2 + δ2),

where the constants depend only on C. Finally, applying the AM-GM inequality with δ and ∥â−

a∗∥2, we get:

∥â− a∗∥22 ≤ O(δ2).

C.2 Proof of Theorem 1

Proof. Define the projected function class,

Gϕ(F) := {T̂ϕ̂f : f ∈ F} ⊆ Hb
k̂
.

and define

gf∗ ∈ argmin
g∈Gϕ̂(F)

L(g),

where for some f∗ ∈ F , we have gf∗ = T̂ϕ̂f
∗. The function gf∗ is guaranteed to exist: since F is

closed and T̂ϕ̂ is continuous, Gϕ̂(F) is closed, and since Gϕ̂(F) ⊆ Hb
k, it is also compact.

In what follows, we’ll write x ≲ y when x ≤ Cy for a constant C that possibly depends on A or

B. The value of the constant may differ from line to line. Recall that ∆ϕ̂
:= L(T f̂)− L(T̂ϕ̂f̂). Then

we have:

∥T (f0 − f̂)∥Z = ∥g0 − T f̂∥Z

≲ L(T f̂)− L(g0)

= L(T̂ϕ̂f̂)− L(g0) + L(T f̂)− L(g0)− L(T̂ϕ̂f̂) + L(g0)

= L(T̂ϕ̂f̂)− L(g0) + ∆ϕ̂

≲ ∥g0 − T̂ϕ̂f̂∥Z +∆ϕ̂.

The inequality on the second line follows from convexity of L(g) and because g0 is the minimum

of L(g) over g ∈ L2(Z). The inequality on the fifth line is similar, but applying smoothness.
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Next by the triangle inequality we have that:

∥g0 − T̂ϕ̂f̂∥Z ≤ ∥T̂ϕ̂f
∗ − T̂ϕ̂f̂∥Z + ∥g0 − T̂ϕ̂f

∗∥Z

and we can bound:

∥g0 − T̂ϕ̂f
∗∥2Z ≲ L(T̂ϕ̂f

∗)− L(g0)

≤ L(T̂ϕ̂f0)− L(g0)

≲ ∥g0 − T̂ϕ̂f0∥
2
Z ,

where the first line follows from convexity of L, the second line because T̂ϕ̂f
∗ is the minimum of

L(g) over g ∈ Gϕ̂(F) and f0 ∈ F , and the fifth line by smoothness of L. Putting this together we

have:

∥T (f0 − f̂)∥Z ≲ ∥T̂ϕ̂f
∗ − T̂ϕ̂f̂∥Z + ∥g0 − T̂ϕ̂f0∥Z +∆ϕ̂

≤ ∥T̂ϕ̂f
∗ − T̂ϕ̂f̂∥Z + ∥Tϕ̂f0 − T̂ϕ̂f0∥Z + ∥g0 − Tϕ̂f0∥Z +∆ϕ̂

≤ ∥T̂ϕ̂f
∗ − T̂ϕ̂f̂∥Z︸ ︷︷ ︸
term 1

+ ∥Tϕ̂f0 − T̂ϕ̂f0∥Z︸ ︷︷ ︸
term 2

+ ∥g0 − ĝ∥Z︸ ︷︷ ︸
first stage error

+ ∆ϕ̂.

The last line uses the fact that Tϕ̂f0 is the L2(Z) projection of g0 onto Hk̂, and ĝ ∈ Hk̂.

We complete the proof by bounding terms 1 and 2 using the empirical risk minimization result

from Lemma 1.

Bounding term 1: Term 1 is the excess risk of the second stage. By construction, there will exist

gf̂ ∈ Gϕ̂(F) such that gf̂ = T̂ϕ̂f̂ and

gf̂ ∈ argmin
g∈Gϕ̂(F)

Ln(g).

Therefore, gf̂ is the empirical risk minimizer of L(g) over g ∈ Gϕ̂(F) and gf∗ is the population risk

minimizer of L(g) over g ∈ Gϕ̂(F). Furthermore, by construction Gϕ̂(F) ⊆ Hb
k̂
. Therefore, we can

apply Lemma 1 with B = Hb
k̂
: with probability at least 1− η,

∥T̂ϕ̂f
∗ − T̂ϕ̂f̂∥Z = ∥gf∗ − gf̂∥Z ≤ O

(
δbn +

√
log(1/η)

n

)
.
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Bounding term 2: Term 2 is the excess risk of empirical risk minimization over Hb
k̂

using the

squared loss for predicting f0(D), instead of the risk L(g). This can be bounded using any off-

the-shelf result for kernel ridge regression — see for example, Fischer and Steinwart (2020); Singh

(2024). We provide a bound based on the critical radius. The squared loss satisfies the conditions

in Assumption 1 — quadratic functions are smooth and convex, and because f0(D) is uniformly-

bounded and Hk
b is uniformly-bounded, then the loss is a uniformly bounded quadratic and there-

fore Lipschitz.

Therefore, we can apply Lemma 1 using Hb
k̂

to get with probability at least 1− η:

∥Tϕ̂f0 − T̂ϕ̂f0∥Z ≤ O

(
δbn +

√
log(1/η)

n

)
.

Proof of Proposition 3

Proof. The result follows by applying the triangle inequality and then Lemma 1.

C.3 Approximation Bias in Projection Step

We now discuss relaxing the following requirement from Assumption 4: The radius b is suffi-

ciently large such that Tϕ̂f0 ∈ Hb
k̂
.

Define the population projection onto the ball of radius b:

T b
ϕ̂
f := argmin

g∈Hb
k̂

{E[(f(D)− g(Z))2]}.

Then the condition on b is equivalent to assuming Tϕ̂f0 = T b
ϕ̂
f0. In the proof of Theorem 1, we

use this condition while bounding term 2. Without this condition, the bound has an additional

approximation term:

Applying Lemma 1 using Hb
k̂

to get with probability at least 1− η:

∥Tϕ̂f0 − T̂ϕ̂f0∥Z ≤ O

(
∥Tϕ̂f0 − T b

ϕ̂
f0∥Z + δbn +

√
log(1/η)

n

)
.
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As b increases, we have a trade-off. The approximation error, ∥Tϕ̂f0 − T̂ϕ̂f0∥Z shrinks, but the

critical radius, δbn will grow. We can choose b to balance these two terms in such a way that asymp-

totically the approximation goes to zero, but in finite samples we control the variance term δbn.

For an example of such a hyperparameter schedule and resulting rates under minimal additional

smoothness conditions, see Theorem 1 of Fischer and Steinwart (2020). The rates in Fischer and

Steinwart (2020) take the form
√

log(n)/n but raised to a power depending on the smoothness of

Tϕ̂f0.

C.4 Testing Assumption 5

Assumption 5 requires that ∆ϕ̂(f̂) ≤ 0, where

∆ϕ̂(f̂) := L(T f̂)− L(T̂ϕ̂f̂)

= E
[ (
Y − E[f̂(D)|Z]

)2 ]
− E

[ (
Y − (T̂ϕ̂f̂)(Z)

)2 ]

Recall that Tϕ̂f̂ , defined in Equation (15), is an approximation of E[f̂(D)|Z] using ridge regression

of Y on ϕ̂(Z). We know that for the true structural function we have ∆ϕ̂(f0) = 0 as n → 0. This

follows because E[f0(D)|Z] = E[Y |Z], and we constructed ϕ̂(Z) such that E[Y |Z] is linear in ϕ̂(Z),

and so T̂ϕ̂f0 → E[f0(D)|Z].

We propose a simple, feasible test for Assumption 5. We divide the data into training and test

samples (or use cross-fitting). In the training set, we obtain our 2SML estimate f̂ . Then also in the

training set, we fit a machine learning predictor of f̂(D) given Z. We do model selection using

cross-validation within the training sample. This produces an estimate of T f̂ , call it T̂ f̂ . This is

the same procedure we use in Equation (17). Then in the test sample, we compute the empirical

difference-in-means:

1

n

n∑
i=1

[
ℓ(T̂ f̂, Zi)− ℓ(T̂ϕ̂f̂, Zi)

]
. (19)

To test for violations of Assumption 5, we run a permutation test to check if this difference-in-

means is statistically-significantly larger than zero. A sufficient but not necessary condition for

Equation (19) to equal 0 is that ridge regression in ϕ(Z) is the best predictor of f̂(D) given Z, in

which case T̂ f̂ = T̂ϕ̂f̂ .
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C.4.1 Summary of our findings in the data

We test for this condition in a number of real and synthetic datasets. We summarize the results

here and show the tests across datasets in Appendix C.4.2. Our main finding is that Assumption 5

depends on how we construct ϕ̂. If we fit the reduced form using gradient-boosted trees and

take ϕ̂(Z) to be the output of each individual tree, we find that the test virtually never rejects.

In fact, we usually have that ridge regression on ϕ̂(Z) is the best predictor of f̂(D) and therefore

T̂ f̂ = T̂ϕ̂f̂ . However, if we make ϕ̂ excessively simple, then the test can often reject. For example,

if the final reduced form prediction of the gradient-boosted tree ensemble is ĝ(Z), we could take

ϕ̂(Z) = ĝ(Z). Then we have a 1-dimensional representation such that E[Y |Z] is approximately

linear in ϕ̂(Z). When we fit 2SML using this basis, we find that our permutation often rejects, and

the performance of the resulting f̂ can be very poor. Similarly, if we choose ϕ̂ using the lasso, if

the resulting basis is too sparse, the permutation test can reject. Note that the sparse lasso basis

is lower-dimensional than the original covaraites, whereas the gradient-boosted tree basis is often

orders of magnitude higher-dimensional than the original covariates.

C.4.2 Tests for Assumption 5 across datasets

All permutation tests use 10,000 permutations. The resulting p-value is an estimate, and an upper

95% confidence interval on an estimated 0 with this many permutations is 0.00037. For each plot

in this section, we plot a histogram of the permutation for the difference in means in (19). We use a

vertical black line to denote the actual difference in means. Assumption 5 says that the population

version of this quantity should be less than or equal to 0.

Organic Strawberry Data; 2SML with Gboost Basis:

First, we test for Assumption 5 in our main specification for our empirical application, as described

in Section 7. The reduced form is fit using gradient-boosted trees. The resulting ϕ(Z) is 3000-

dimensional. We show the result of our permutation test in Figure 3.
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Figure 3: Organic Strawberry Data; 2SML with GBoost Basis

The estimated p-value is 0.948, so there good reason to believe that Assumption 5 holds for our

main specification. The actual difference in means is -0.007, which is orders of magnitude smaller

than the squared means themselves — the MSE of T̂ f̂ (which is our measure of the out-of-sample

NPIV estimation error) is .

Organic Strawberry Data; 2SML with 1d Prediction Basis:

Technically, the 1-dimensional basis ϕ̂(z) = ĝ(z) satisfies the condition in Proposition 1. However,

when we use this basis for in our empirical application, this basis violates Assumption 5 as we can

see in Figure 4.
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Figure 4: Organic Strawberry Data; 2SML with 1d Prediction Basis

The estimated p-value is 0.000, so the test very strongly rejects. To understand the absolute mag-

nitude, the mean squared error of T̂ϕ̂f̂ is , which is essentially equal to 2SML with the full

Gboost basis. However, the MSE of T̂ f̂ (which is our measure of the out-of-sample NPIV estima-

tion error) increases all the way to . This is a severe degredation in performance. Note that

is still smaller MSE than the MSE for the minimax method, EnsembleIV, in Table 6 which

is . However the MSE is now worse than the GBoost/Spline estimator following Chen et al.

(2023), which achieves an MSE of .

Card 1995; 2SML with Gboost Basis:

We now test for Assumption 5 using the returns to schooling dataset from Card (1995). The out-

come is log wage, treatment is years of schooling, we use proximity to 4-year and 2-year colleges

as instruments. We use 5 controls: experience, and indicators for black, southern, SMSA, and

marriage. Our cross-validated gboost model for the reduced form results in ϕ(Z) that is 322-

dimensional. We show the result of our permutation test in Figure 5.
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Figure 5: Card 1995; 2SML with GBoost Basis

The estimated p-value is 0.449, so the test does not reject. The actual difference in means is 0.003

which is orders of magnitude smaller than the squared means themselves — the MSE of T̂ f̂ is

0.741.

Census Housing Dataset; 2SML with GBoost Basis:

Next, we test Assumption 5 on our semi-synthetic Census housing dataset as introduced in Sec-

tion 6. We use a cross-validated GBoost model for the reduced form, resulting in a ϕ(Z) that is

150-dimensional. The results of the permutation test are in Figure 6
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Figure 6: Census Housing; 2SML with GBoost Basis

The estimated p-value is 0.560 so the test does not reject. As in the cases above using the GBoost

basis, the actual difference means (-0.124) is two orders of magnitude smaller than the MSE of T̂ f̂

(28.4).

NYC Green Cab Dataset; 2SML with GBoost Basis:

Finally, we test Assumption 5 on our semi-synthetic NYC Green Cab dataset as introduced in

Section 6. We use a cross-validated GBoost model for the reduced form, resulting in a ϕ(Z) that is

200-dimensional. The results of the permutation test are in Figure 7.
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Figure 7: NYC Green Cab; 2SML with GBoost Basis

The estimated p-value is 0.247. This is not significant at the 90% level, but is a smaller p-value

than in the other cases where we use a GBoost basis. However, the actual difference means is

miniscule: 0.003. This is very small compared to the MSE of T̂ f̂ which is 0.883. So if there is a

violation Assumption 5 on this dataset, it has an negligible impact on the final performance of the

model.

C.5 Moment Conditions for Asymptotic Normality

Assumption 6 (Moment Conditions). Define σ2 := E[ψ0(D,Z, Y )2], κ3 := E[|ψ0(D,Z, Y )|3], ζ4 :=

E[ψ0(D,Z, Y )4]. Then the following moment bounds hold for some (Q̄, σ̄, q̄, q̄′):

1. E[m(f ;D)2] ≤ Q̄∥f∥2D,

2. E[Y − f0(D)|D] ≤ σ̄2,

3. ∥q0∥∞ ≤ q̄, ∥q̂∥∞ ≤ q̄′,

4. {(κ/σ)3 + ζ2}n−1/2 → 0.

Parts of Assumption 6 are already satisfied by applying Assumption 3 to 2SML and 2SRR:

For example, we’ve assumed that f0 ∈ Fml and supf∈Fml
∥f∥∞ < ∞ by Assumption 3 applied to

2SML. Thus it’s sufficient that Y is bounded almost surely to satisfy Assumption 6 (2). Note that

in applying Assumption 3 to 2SML with the squared loss, we have assumed that the squared loss
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is Lipschitz. This already implies that Y must be bounded almost surely.

Similarly, we’ve already assumed that q0 ∈ Frr and supf∈Frr ∥f∥∞ < ∞ by Assumption 3 applied

to 2SRR. This implies that ∥q0∥∞ <∞ and ∥q̂∥∞ <∞, satisfying Assumption 6 (3).

The other two parts of Assumption 6 require further assumptions placed on our estimand:

Assumption 6 (1) is a mean-squared continuity assumption on the linear functional θ(f). Note that

this is stronger than continuity (the conditional required for Riesz representation). Continuity

implies there exists C <∞ such that:

E[m(f ;D)]2 ≤ C∥f∥2D,

which is equivalent to the existence of the Riesz representer α0 that satisfies for some M̄ < ∞

(which is the operator norm of θ):

E[α0(D)2] ≤ M̄2.

By contrast, the mean-squared continuity assumption,

E[m(f ;D)2] ≤ Q̄∥f∥2D,

is a sufficient (but not necessary) condition for continuity with M̄2 ≤ Q̄.

Finally, Assumption 6 (4) is a condition on the moments of the efficient influence function. Sec-

tion B.3 of Chernozhukov et al. (2023) provides a set of conditions such that these moments are

bounded to be roughly on the same order as the operator norm, M̄ or M̄2. Note that M̄ is the usual

measure of overlap of the functional θ, so this boils down to assuming that the degree of overlap

puts some constraints on the 3rd and 4th moments of the efficient influence function.

D Cross-Fit Debiased Estimate

Here we describe how to compute the debiased estimate with sample splitting.

1. Randomly partition the n samples into folds, Ik, k ∈ {1, ...,K}.

2. For each fold k, estimate the nuisances f̂k and q̂k using all data not in Ik.
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3. Compute the cross-fit debiased point estimate:

θ̂D :=
1

n

K∑
k=1

∑
i∈Ik

m(f̂k, Di) + q̂k(Zi)(Yi − f̂k(Di)).

4. Estimate the asymptotic variance:

σ̂2 :=
1

n

K∑
k=1

∑
i∈Ik

(
θ̂D −m(f̂k, Di)− q̂k(Zi)(Yi − f̂k(Di))

)2
.

E Details for Synthetic and Semi-Synthetic Evaluation

E.1 Forming IV Benchmarks from Prediction Tasks

We begin with a prediction dataset composed of (Xpred
i , Y

pred
i ) pairs. The goal is produce a semi-

synthetic dataset with random variables Y,D,W,Z that follows the DGP, Y = f0(D,W )+ϵ, where

ϵ satisfies E[ϵ|Z,W ] = 0, but such that ϵ is correlated with both Y and D. This turns the original

prediction task into an endogenous prediction task that requires leveraging the instrument Z.

First, we fit a machine learning model (selected using cross-validation) that predicts Y pred using

Xpred. Next we choose a single dimension fromXpred to be the “treatment” variable; call thisDpred

and the remaining features W pred. We do so by computing feature importance measures from the

machine learning model, and select the feature with the highest importance. The importance mea-

sures are different for different models. For a linear model, we use the size of the coefficients; for

kernel ridge models, we use the average derivative with respect to the features; and for gradient

boosted trees we use the “gain” feature importances computed by the xgboost library.

Next, we generate an unobserved confounding variable, U , that we use to construct both D and

Y . For every observation in the original dataset, we draw Ui iid from a fixed distribution. We use

Poisson in our benchmarks when D is integer-valued. Next we form a confounded version of the

treatment. For each observation in the original dataset, we form:

Di = D
pred
i + Ui.

Then we construct the confounded outcomes. Let the covariates be the same as in the original data,

i.e. Wi = W
pred
i , Define the exogenous noise νi = Y

pred
i − f0(D

pred
i ,Wi), which by construction

is approximately mean zero conditional on Dpred
i ,Wi. Define a function of the confounder, ρ(U),
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such that E[ρ(U)] = 0. Then our confounded outcomes are:

Yi = f0(Di,Wi) + ρ(Ui) + νi.

Notice that this matches the form of the NPIV problem, with ϵi = ρ(Ui) + νi. Naively predicting

Yi with Di,Wi will result in a highly biased estimate of f0 because Di and ϵi are correlated.

Finally, we generate an instrument. For some function h (which may have vector valued output),

let

Zi = h(D
pred
i ).

By construction, Zi is independent of Ui and νi, but is predictive of Di and is possibly correlated

with Wi. Thus we satisfy the requirement that E[ϵ|Z,W ] = 0. The relevance of Zi depends on the

functional form of h and the variance of the noise Ui. For simplicity, in our benchmarks we let h

be the identity map, so the relevance of Zi is driven by the variance of Ui.

Our final semi-synthetic dataset is composed of observations (Yi, Di, Zi,Wi), one for each obser-

vation in the original dataset. For benchmarking, we divide this dataset into a training set and a

hold-out for evaluation. We run different IV procedures in the training set to produce estimates

of the structural function f̂ , and then evaluate them in the hold-out sample using mean-squared

error and R2 against the true structural function f0.

This end-to-end procedure can be used to turn any prediction task into a endogenous prediction

task with valid instruments. The following is a summary of the free parameters within this frame-

work that can be varied to produce different benchmarks:

• The choice of the “treatment” feature Dpred from the columns of Xpred

• The distribution of the confounder, U

• The functional form of the outcome confounding, ρ(U)

• The functional form for the instruments, h(Dpred
i )

Note that the resulting benchmark maintains a variety of the complex correlations that exist in

the real data. The structural function f0 will be the optimal predictor for the original task, which

may require very complicated tree ensemble models. The treatment Di will inherit the real-world

correlations with Wi (all we have done is add independent noise to the original feature Dpred
i ),

without us having to specify these correlations in advance. Similarly for the correlation structure
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between Zi and Wi. The main synthetic component is the relationship between Zi and Di, and

in the examples below, we use simple functional forms for this relationship. However, in NPIV

for any candidate function f(D,W ), the relevant object, E[f(D,W )|Z,W ], will in general be a

complicated non-linear function of Z, making the choice of the functional form h less important.

E.2 Coverage Simulation DGP

Our DGP first draws 3 covariates, X1, X2, X3 and an unconfounded treatment D̃. The variables

D̃,X1, X2 are draw iid from the standard normal distribution. We set:

X3 = 4 · expit(D̃ −X1)− 2 + ϵmcol

where ϵmcol ∼ N (0, σ2mcol). We have a confounder U ∼ N (0, σ2c ), confounded treatment, D =

D̃ + U , and instrument Z = D̃ + ϵiv with ϵiv = N (0, σ2iv). The structural function is:

f0(D,X) = D · (0.2 + sin(D) + expit(X1)− 0.2 ·X3),

with estimand:

θ0 = θ(f0) = E
[
∂f0(D,X)

∂D

]
.

The outcome is Y = f0(D,X) + ρ · U + ϵout with ϵout ∼ N (0, σ2out) and where ρ ∈ R controls the

strength of confounding.

The key feature of our setting, is that as σ2mcol + σ2iv → 0, X3 becomes a deterministic function

of D and X1. This induces a nonparametric version of multi-collinearity. In the nonparametric

model when σ2mcol + σ2iv → 0, the average derivative w.r.t. D becomes unidentified, because any

relationship between the outcome and D could be alternatively written as a relationship between

the outcome and X1, X3. In other words, if we make σ2mcol very small, the operator norm of θ(f),

or alternatively the norm of the Riesz representer α0 can become very large — in causal inference

language, we have poor overlap.

For all simulations, we use the following parameters: σiv = 0.06, σc = 0.08, σout = 0.04, ρ = −8.

We then consider a medium overlap setting with σmcol = 0.4 and a poor overlap setting with

σmcol = 0.05. Finally, we approximate the derivative numerically using symmetric differencing,

θ(f) ≈ E
[
f(D + h,X)− f(D − h,X)

2h

]
,
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where we pick h = 0.1. For both settings, we get a ground-truth estimate of θ0 = 0.7 by simulating

ten million samples and then calculating the derivative w.r.t. the true structural function.

F NPIV With and Without Covariates

For many NPIV methods, while it is without loss of generality to write D = (D,X) and Z =

(Z,X), the case with covariates represents a major gap in difficulty. See Appendix C of Xu et al.

(2020) for a discussion. Fortunately, in 2SML we do not encounter this difficulty. Our first-stage

representation learning step finds a basis ϕ(Z,X) that best predicts Y . In the second stage, the

projection Pϕ kills information about X that is not relevant for predicting Y . We know that this

extraneous information in X is not used in E[f0(D,X)|Z,X] because of the NPIV moment condi-

tion. This is another advantage of our formulation.
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