
Using Supervised Learning to Estimate Inequality in the Size and
Persistence of Income Shocks

David Bruns-Smith
bruns-smith@berkeley.edu

UC Berkeley
California, USA

Avi Feller
afeller@berkeley.edu

UC Berkeley
California, USA

Emi Nakamura
enakamura@berkeley.edu

UC Berkeley
California, USA and Outside

Researcher, Central Bank of Iceland

ABSTRACT
Household responses to income shocks are important drivers of
financial fragility, the evolution of wealth inequality, and the effec-
tiveness of fiscal and monetary policy. Traditional approaches to
measuring the size and persistence of income shocks are based on
restrictive econometric models that impose strong homogeneity
across households and over time. In this paper, we propose a more
flexible, machine learning framework for estimating income shocks
that allows for variation across all observable features and time
horizons. First, we propose non-parametric estimands for shocks
and shock persistence. We then show how to estimate these quanti-
ties by using off-the-shelf supervised learning tools to approximate
the conditional expectation of future income given present informa-
tion. We solve this income prediction problem in a large Icelandic
administrative dataset, and then use the estimated shocks to docu-
ment several features of labor income risk in Iceland that are not
captured by standard economic income models.

CCS CONCEPTS
• Applied computing→ Economics; • Computing methodolo-
gies →Model development and analysis.
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1 INTRODUCTION
Economic hardship and the dynamics of socioeconomic inequality
depend crucially on the income shocks that households face. Such
shocks come in a variety of forms: positive shocks include promo-
tions and stimulus checks; negative shocks include job loss, illness,
and lack of available working hours. A large body of research shows
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that unexpected income shocks pass through to changes in house-
hold spending and saving [45, 53, 59], with wide heterogeneity
in responses across household characteristics [8, 24, 27, 36, 38].
Households’ responses to shocks are also key drivers of financial
fragility [1, 47, 50], the effectiveness of fiscal policy [7, 34, 35], and
the evolution of wealth inequality [6, 20, 54].

To study the impacts of shocks on households and the corre-
sponding implications for subsidy allocation or macroeconomic
policy, we first need to be able to measure them. While we observe
changes in income from one period to the next in many economic
datasets, we rarely observe what proportion of those changes were
unexpected shocks, or whether those shocks were temporary or
will persist long into the future. Consider a household that makes
$60,000 dollars annually. In the next year, the household might
simultaneously experience a promotion to site manager — a per-
sistent increase of $5,000 a year — and an especially-snowy spring
construction season — a temporary decrease of $20,000 a year — for
a total observed shock of -$15,000. Does this hypothetical household
spend more because their expected income will be higher into the
future? Do they (or can they) spend less to weather the larger but
temporary negative shock? Do they have a savings buffer to draw
upon, or does the unexpected temporary loss of income cause them
to miss their mortgage payments? These various considerations are
difficult to tease apart based on the observed, overall shock alone.

In the economics literature, the workhorse statistical model for
analyzing shocks and their persistence is a panel model where cur-
rent income is the sum of a random transient shock and unobserved
permanent income that evolves according to an autoregressive pro-
cess [2, 10, 44]. Statistical estimands of interest, such as the size
of transient and persistent shocks, are then defined with respect
to the parameters of this model. Importantly, however, this model
embeds a series of assumptions about the income process that im-
pose strong homogeneity across households and over time, such
as assuming that households across the income distribution face
shocks of the same size, severely limiting our ability to understand
critical sources of variation.

In this paper, we instead propose to directly estimate income
shocks and their persistence from income data. We first propose
a non-parametric estimand for income shocks — defined outside
of any particular statistical model — in terms of the conditional
expectation of future income given the information known in the
present. Estimating these conditional expectations for a particular
population requires finding the best mean-squared error predic-
tors for data drawn from that population, a task we can perform
using off-the-shelf supervised learning tools with strong uniform
convergence guarantees. Our procedure outputs estimates of in-
come shocks associated with each income observation along with
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the persistence of those shocks at several horizons into the future.
These shocks can then be used in downstream tasks like estimating
households’ consumption/savings response, calibrating models for
the evolution of wealth inequality, or as real-world datasets for
studying algorithmic fairness.

Contributions:

• We provide a nonparametric definition of income shocks that
relaxes strong functional form assumptions, and allows re-
searchers to assess heterogeneity in the size and persistence
of income shocks across observed features.

• As a real-world application, we estimate income shocks in
Iceland by predicting labor income at various horizons into
the future using a large administrative tax dataset.

• We document several features of the estimated shocks that
are not captured by standard economic parametric income
models, including: a much larger magnitude of income risk
faced by individuals at the bottom of the income distribution;
an exponential decay in the persistence of shocks on average
over time; wide hetereogeneity in the persistence of shocks
across household circumstances; and substantial asymmetry
between positive and negative shocks.

We hope to draw attention to an under-utilized role for prediction
in the social sciences, where supervised learning models are used
as an approximation of a conditional expectation, rather than used
to predict future outcomes for new, potentially out-of-distribution
observations. We also hope to further connect the parallel research
on income shocks in economics and computer science. The large
body of research on income uncertainty and household responses
in economics can bring valuable insight to the recent literature on
algorithmic fairness and inequality. Likewise, the powerful non-
parametric modelling and optimization toolboxes from computer
science can shed new light on the dynamics of income.

2 RELATEDWORK
2.1 Economics
A large literature on economic theory studies household responses
to income shocks. The permanent income hypothesis [16, 26] sug-
gests that households will smooth consumption over the lifecycle,
and predicts very small responses to temporary shocks but large
responses to permanent shocks. A literature on precautionary sav-
ings explores why consumption seems to track income so closely
in the data with an emphasis on uninsurable idiosyncratic income
risk [12, 13, 29, 32, 35].

Most closely related to the current work is the literature on
transient-persistent income processmodels. Linear transient-persistent
autoregressive models have beenwidely used [2, 10, 44], and wewill
compare these parametric models to our non-parametric estimands
in Section 3.2.

Several recent papers have critiqued these models for failing
to match key stylized facts documented in real income data. For
example, Guvenen et al [30] emphasize the substantially higher
skewness and kurtosis exhibited by US income data that linear
panel models have difficulty reproducing. Other papers address
the assumptions about the persistence of shocks embedded in stan-
dard models. For example, De Nardi et al [21] discretize income

into buckets, and then non-parametrically estimates a first-order
Markov chain for transitions between these discrete states. They
find evidence for heterogeneity in the persistence of shocks and
substantial deviations from the AR(1) process in [10]. Arellano et al
[4, 5] propose a Bayesian approach for estimating the posterior of
permanent income (defined as a latent variable) using expectation-
maximization. Straub [63] creates proxies for permanent income
in real data by averaging together several past and future income
observations — a procedure that could be seen as a very simple
version of predicting income at several future horizons.

2.2 Computer Science and Machine Learning
Recently, a growing literature in computer science and algorith-
mic fairness has also emphasized the role of income shocks. This
includes algorithm and mechanism design research for subsidy al-
location where the level of household income and wealth as well
as their susceptibility to shocks play central roles [1, 50, 52]. Other
work studies the dynamics of income inequality over time [31, 56],
including their implications for policy interventions. In many ways,
this literature has close connections to the macroeconomic con-
sumption and inequality literature. In fact, Nokhiz et al [50] solves
and simulates from a macroeconomic consumption model with
incomplete markets and precautionary savings motives in the style
of Hubbard et al [32] or Gourinchas and Parker [29].

Most of the related work in computer science has used simu-
lated income data. For example, Abebe et al [1] simulate shocks as
arriving via a Poisson process. Nokhiz et al simulate income with
a first-order Markov chain over discretized income states. On the
other hand, D’Amour et al [18] have an implicit model for income
shocks in their simulated model for loan repayment. In their model,
the probability of repayment is a deterministic function of credit
score, embedding a number of assumptions about credit score cal-
culations and the income risk faced by households that necessarily
partially determines their ability to repay. Our work is complemen-
tary to the work above and provides an alternative to simulation,
measuring the degree of labor income risk directly in real-world
data.

Reader et al [56] suggest modelling the evolution of income in-
equality as a linear dynamical system, with policy interventions
and feedback loops modelled as a PID controller. Our method simi-
larly has connections to the controls literature. As we will discuss,
the transient-persistent models for income can be formulated as
partially-observed dynamical systems, finite-sample estimation of
which has featured in recent research on system identification
[39, 40, 46, 61].

An adjacent literature studies the dynamics of income between
generations, mostly focused on interventions in university admis-
sions [3, 31]. This work complements a large body of work on
inter-generational mobility in economics [14, 17, 19]. Extending
our predictive estimands and the corresponding measures of in-
come risk to an inter-generational context would be an interesting
direction for future work.

2.3 Limits of Prediction in Social Science
Another important literature emphasizes the limits of predictabil-
ity of future life outcomes. Narayanan [49] called predicting social
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outcomes “fundamentally dubious”. A large-scale prediction compe-
tition, the Fragile Families Challenge, found that predictive accuracy
across a variety of social outcomes and algorithms was low across
the board [60]. Flexible machine learning models hardly performed
better than linear regression on a handful of features. More broadly,
Liao et al [41] and Raji et al [55] outline a large taxonomy of basic
ML functionality failures in real-world deployments.

We instead emphasize a potentially under-utilized role for pre-
diction in social science: approximating a conditional expectation.
This follows the exhortation in Lundberg et al [42] regarding predic-
tion in sociology: to clearly state the statistical estimand of interest.
We would like to characterize the distribution of prediction errors
around the conditional expectation of future income and how it
evolves from one period to the next. If the absolute size of these
errors for the best possible predictor given the feature set is large,
then this is not a functionality failure, but an accurate statement
of income risk in the population. Likewise, if the model has sub-
stantially larger prediction errors for one sub-group compared to
another, then the relative distribution of these residuals tell us about
the inequality in income risk across groups.

2.4 Predicting Future Income
In this work, we solve prediction problems for income ℎ periods
into the future conditional on current and past income and other
covariates. Surprisingly, we have found very few published papers
that solve this kind of income forecasting problem. The only such
example to our knowledge is Gerardi et al [28], who use unpenalized
linear regression to predict future income conditional on current
income, housing wealth, and demographic variables. See Section 4.3
for a discussion of the performance of linear regression in our
setting.

A very large literature in machine learning considers income
prediction problems framed as classification tasks. Most of this
work is centered on the Adult dataset [37], first used to assess the
performance of tree-based ensembles [9]. See Ding et al [23] for a
review of recent research using this dataset, especially on algorith-
mic fairness, and several associated limitations. The standard task
on Adult is classifying whether or not income falls below or above
$50,000. In contrast, we consider income prediction as a regression
problem, and introduce a dynamic dimension by forecasting future
income conditional on current and past income. Furthermore, the
emphasis of our work is different but complementary to the fairness
literature using Adult — if our prediction algorithms have larger
prediction errors for certain sub-populations we interpret this as
a substantive result about the relative income risk faced by those
sub-populations.

3 DEFINING INCOME SHOCKS
Let 𝑦𝑖𝑡 denote log income of individual 𝑖 at time 𝑡 and let 𝑥𝑖𝑡 de-
note covariates such as age, education, calendar year, and wealth.
We assume that we observe 𝑁 i.i.d. samples of the trajectories
𝜏𝑖 B {(𝑦𝑖𝑡 , 𝑥𝑖𝑡 )}𝑇𝑖𝑡=1 from the same joint distribution — we make
no assumptions within a trajectory on the relationship between
𝑦𝑖𝑡 and 𝑥𝑖𝑡 or their evolution over time. The 𝜏𝑖 can either be inter-
preted as draws from an underlying joint distribution or as samples
from some finite population of individuals. In what follows, we

omit the 𝑖 subscripts when clear from context. In practice, draws
across individuals are unlikely to be entirely independent and we
consider some common violations, such as domestic partners, in
the Appendix.

We define an income shock at time 𝑡 to be the difference be-
tween observed income 𝑦𝑡 and expected income given all infor-
mation available before time 𝑡 . Define the information set I𝑡−1 =
{𝑦𝑡−1, 𝑥𝑡−1, 𝑦𝑡−2, 𝑥𝑡−2, ...}. Then the income shock at time 𝑡 is:

Δ𝑡 B 𝑦𝑡 − E[𝑦𝑡 |I𝑡−1] . (1)

We define the persistence of the time 𝑡 income shock as the change
in expected future income upon adding the new information (𝑦𝑡 , 𝑥𝑡 )
into the information set. We write the horizon-ℎ persistence of the
shock Δ𝑡 for all ℎ ≥ 1 as:

𝜙𝑡,ℎ B E[𝑦𝑡+ℎ |I𝑡 ] − E[𝑦𝑡+ℎ−1 |I𝑡−1] . (2)

As a concrete example, let E[𝑦𝑡 |I𝑡−1] = 1.0 and realized income
𝑦𝑡 = 2.0. Then the total shock at time 𝑡 is Δ𝑡 = 1.0. Now we use
the realized 𝑦𝑡 (and 𝑥𝑡 ) to update the expectations for the future
to measure how long the shock lasts. If the updated conditional
expectation E[𝑦𝑡+1 |I𝑡 ] = 1.5, then the portion of the total shock Δ𝑡
that is expected to remain after one period is 𝜙𝑡,1 = E[𝑦𝑡+1 |I𝑡 ] −
E[𝑦𝑡 |I𝑡−1] = 0.5. If the original and updated 2-step-ahead condi-
tional expectations are E[𝑦𝑡+2−1 |I𝑡−1] = 1.0 and E[𝑦𝑡+2 |I𝑡 ] = 1.1,
then the amount of the total shock expected to persist two periods
into the future is 𝜙𝑡,2 = 0.1. So in this example, while the time 𝑡
unexpected change in income was large, only half of the shock is
expected to persist one period into the future, and only 10% of the
shock is expected to persist two periods into the future. See Figure 1
for an illustration.

The quantities Δ𝑡 and 𝜙𝑡,ℎ are our non-parametric estimands.
They are not observed directly, and we would like to estimate them
from data. However, first we briefly justify our choice of these
quantities.

3.1 Theoretical justification
Simple theoretical models for household responses to income shocks
usually imply that consumption depends on the expected present
value of future income, sometimes called permanent income. Given
a discount rate 𝛾 , permanent income at time 𝑡 is:1

𝑦
perm
𝑡 B E

[ ∞∑︁
𝑘=𝑡

𝛾𝑘−𝑡𝑦𝑘

�����I𝑡
]
. (3)

Then the unexpected change to permanent income at time 𝑡 is

𝑦
perm
𝑡 − E[𝑦perm𝑡 |I𝑡−1] = Δ𝑡 +

∞∑︁
ℎ=1

𝛾ℎ𝜙𝑡,ℎ . (4)

So in this sense, the objects Δ𝑡 and 𝜙𝑡,ℎ are precisely the relevant
theoretical objects for studying a household’s response to income
shocks. Equation (4) suggests one way to summarize these shocks
in a single measurement. Indeed, the framework of updating future
expectations as new information arrives is exactly the motivation
for the definition of permanent income in Flavin [25].

1Typically, permanent income would be discounted by 1/𝑟 , where 𝑟 is the rate of
return on assets and therefore represents the relative value of money now versus
money in the future. In the simplest models, 𝛾 = 1/𝑟 in equilibrium.
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Figure 1: An illustration of our estimands. The black dots
represent the conditioning set I𝑡−1. The grey boxes represent
the predictions one and two periods ahead. At time 𝑡 , we
observe the new observation (shown as an open circle) 𝑦𝑡 .
The difference between the new observation and the previous
prediction is Δ𝑡 as shown in the upper diagram. When we
add 𝑦𝑡 to the conditioning set and update the predictions, we
get the persistence at each horizon as shown in the lower
diagram.

More sophisticated economic models suggest that current con-
sumption choices may depend on the whole conditional distribution
of 𝑃 (𝑦𝑡+ℎ |I𝑡−1) rather than just the conditional mean. This suggests
a straightforward extension of our procedure using conformalized
quantile regression [57] that we hope to pursue in future work.

3.2 Comparison to parametric estimands
It is helpful to compare our non-parametric estimands to the com-
monly used transient-persistent model [4, 10]. This model imposes
the following structural assumptions on the income process:

𝑦𝑡 = 𝑝𝑡 + 𝜖𝑡 ,

𝑝𝑡 = 𝑓 (𝑝𝑡−1) + 𝜂𝑡 ,

for somemeasurable function 𝑓 andwhereE[𝜖 |𝑝𝑡 ] = 0 andE[𝜂𝑡 |𝑝𝑡−1] =
0. First, notice that the expected system transitions in the implied
autoregressive model, obtained via the standard trick of re-writing

the partially-observed non-linear system as an infinite-order autore-
gressive model, is exactly the conditional expectation E[𝑦𝑡 |I𝑡−1].
See for example [40] for discussion in the controls setting.

The classical parametric model used in [10] makes the additional
functional form assumption:

𝑝𝑡 = 𝑝𝑡−1 + 𝜂𝑡 .

where the variance of𝜂 and 𝜖 are independent of 𝑝𝑡 . Note that in this
case, our non-parametric definition for shock persistence exactly
corresponds to the persistent shock in the model; 𝜙𝑡,ℎ = 𝑝𝑡 − 𝑝𝑡−1
because E[𝑦𝑡+ℎ |𝑝𝑡 ] = 𝑝𝑡 . However, the classical model imposes
several additional testable implications: that households across
the income distribution face shocks of the same size; that there
are no interactions between age, demographics and shock size or
persistence; that persistent shocks are perfectly-persistent into
the future; and that there is no asymmetry in the persistence of
positive and negative shocks. Using our non-parametric estimands
that avoid making such strong assumptions, we will demonstrate
substantial deviations from this simple model for labor income in
Iceland.

3.3 Limitations of any particular estimator
The exact interpretation of our non-parametric estimand depends
entirely on our dataset, our definition of the relevant random vari-
ables, and the contents of the conditioning set, I𝑡 . For example,
as we discuss in Section 4.1, we have to choose the definition of
the periods 𝑡 ; are these yearly or monthly shocks? Monthly shocks
have to account for seasonal variation, whereas for yearly shocks
the business cycle becomes a central object of concern. Likewise,
we have to choose a definition of income; does 𝑦𝑡 represent labor
income or total family income? Any of these choices may not be
inherently right or wrong, but will have different implications for
the relevant downstream economic analysis.

More generally, as commonly done in the economics literature
[2, 4, 10, 20], we measure shocks in terms of a statistical expecta-
tion. The relevant theoretical objects of interest in Section 3.1, are
household expectations because a household’s behavioral responses
to income risk depend on their own beliefs about the future. This
can introduce substantial measurement error along across at least
two dimensions. First, we do not have access to important private
information — for example an individual’s plan to leave their job
next year to go back to school. Second, our predictions are formed
using hundreds of thousands of observations from across the entire
population of Iceland, information that any given individual might
not have. This discrepancy must be kept in mind when perform-
ing any later economic analysis using our estimated shocks. For
example, we may try to impose some structural assumptions on the
nature of this measurement error, and partially identify behavioral
estimands to account for the additional uncertainty. Or otherwise,
we have to more narrowly interpret our estimated income shocks as
a measure of aggregate labor income risk across Iceland, capturing
heterogeneity across observables in the tax data, rather than the
personal uncertainty about future income faced by any particular
individual.
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4 THE INCOME PREDICTION PROBLEM
Our non-parametric estimands for income shocks, Δ𝑡 , 𝜙𝑡,ℎ , can
all be computed given the conditional expectations E[𝑦𝑡+ℎ |I𝑡 ] for
all 𝑡 and all ℎ ≥ 1. The conditional expectation is equivalent to
the best mean-squared error predictor of 𝑦𝑡+ℎ over all possible
functions of the features in the set I𝑡 . Therefore, we have reduced
the problem of estimating income shocks and their persistence to
a series of prediction problems for which we can use off-the-shelf
supervised learning tools. In this section, we discuss how we solve
these prediction problems in practice with a large administrative
tax record dataset from Iceland.

4.1 Data and sample selection
We use income measurements from Icelandic income tax data, made
available to us through collaboration with Statistics Iceland. In our
Icelandic tax data, the period 𝑡 is measured in years, and for every
individual in every year from 1981-2018 we observe (log) labor
income 𝑦𝑡 and a collection of other demographic and financial vari-
ables. We transform all income observations to 2018 US dollars,
adjusting for Icelandic CPI [33] and the exchange rate between the
dollar and the Icelandic Króna [51]. While we observe nearly the
entire population of Iceland during this timeframe, we restrict our
sample to reflect in-employment labor income risk. This involves
three sample selection steps: (1) we only include individual-year ob-
servations with labor income strictly greater than zero; (2) we only
include those individual-year observations for which we observe
non-zero income for at least six consecutive periods before and
at least twelve consecutive periods after; and (3) we only include
observations for individuals aged thirty and older (to avoid income
changes due to switching in and out of higher education). This
leaves 508,235 individual-year observations across 62,387 individu-
als.

Note that the choice to study in-employment labor risk and
unemployment risk separately is common [10, 22, 48, 62]. Our
choice to focus on in-employment risk is mostly for purposes of
presentation and for comparison with [10]. Unemployment risk
is also of central interest, and re-estimating income shocks with
unemployment will be the object of future work. Furthermore, the
particular choice of zero for the minimum threshold might include
individuals who are unemployed for part of the year; for discussions
on alternative choices of the minimum threshold see Nakajima and
Smirnyagin [48]. Likewise, the choice to study labor income as
opposed to total income after taxes and transfers has consequences
for the interpretation of our estimand. In general, these choices for
sample selection and the definition of income do not change the
non-parametric estimands outlined in Section 3 but are enormously
important for substantive economic analysis of the results.

For covariates 𝑥𝑡 , we include age, education, gender, total assets
(net of debt), and housing wealth.2 Education is binned into five cat-
egories: incomplete compulsory education, compulsory education
only, upper secondary only, undergraduate only, and beyond un-
dergraduate. With no essential loss of generality, instead of fitting

2Notably missing from the tax data is information on race or ethnicity, presumably
due to extremely low rates of immigration. During the timeframe of our dataset, more
than 92% of the population were ethnically Icelandic.

a separate model for each 𝑡 , we will fit a single predictor, but addi-
tionally condition on calendar year. Thus our complete feature set
includes dummies for calender year 𝑡 , current income and covariates
(𝑦𝑡 , 𝑥𝑡 ), and six lags of income and covariates, {(𝑦𝑡−ℓ , 𝑥𝑡−ℓ )}6ℓ=1.
Note that this is only an approximation of the information set I𝑡 ,
which should include as many lags as are available. However, we
can justify this theoretically with relatively mild assumptions on
the mixing of the stochastic process for income. In practice, we also
found that including more lags does not improve mean-squared
error in cross-validation.

4.2 Training
As we would like to use highly-flexible regularized function classes
for prediction, we leverage both sample-splitting and cross-validation
to prevent over-fitting. Note that while each training sample corre-
sponds to an individual-year observation, the observations within
an individual trajectory are highly-correlated. Therefore, we per-
form all sample-splitting and cross-validation at the individual level.
First, we randomly divide the full population of individuals into
two halves. Within each half, we train models predicting 𝑦𝑡+ℎ for
ℎ = {1, ..., 12}, using the feature set described above. Prior to train-
ing, all features were shifted and scaled to have mean zero and
standard deviation one. We considered a variety of regularized
linear models, random forests, and gradient-boosted tree regres-
sors, over a range of hyperparameter values as described in the
Appendix. We chose the best performing model using 5-fold cross-
validation. Gradient-boosted trees consistently performed the best
in cross-validation across all horizons.

The output of this process is our best approximation of the
conditional expectations E[𝑦𝑡+ℎ |I𝑡 ] for all ℎ from each of the two
halves. We then compute the estimated income shocks Δ𝑡 and
persistence profiles 𝜙𝑡ℎ by applying the models trained in one half
to the individual-year observations in the opposite half. This way,
the income shock for each observation is estimated using a model
that was never previously trained using that observation.

Remark:We claim that this process gives the best approxima-
tion of the conditional expectation in the population. This does
not mean that our trained models are the best predictors of fu-
ture income on never-before-seen observations from a different
population. Applying the predictors outside our dataset could face
significant distribution shift, perhaps most notably the massive im-
pact of COVID-19 in 2020 and onward. Instead, we rely on the fact
that we randomly split individuals into two halves from a known
population. This means the strong uniform convergence guarantees
that come from the i.i.d. assumption in supervised learning apply
exactly. As a result, however, any insights about income risk from
our procedure are only guaranteed to describe the population of
Iceland during the timeframe of our sample — extrapolating outside
this population would require additional statistical assumptions.

4.3 Model assessment
Before presenting our results on income shocks, we first assess our
models’ predictive performance. First, we emphasize the advan-
tage of using a highly flexible model class by comparing our final
gradient-boosted tree models to two simpler benchmarks: a simple
random-walk baseline that always outputs most-recent income and
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Figure 2: Mean-squared error of hold-out predictions. The
top diagram plots the mean squared error of the gradient-
boosted trees model, the linear model, and the random walk
baseline for horizons 1 to 12. The bottom diagramplots the
percent reduction in mean-squared error achieved by the
flexible gradient-boosted tree model relative to the linear
model and random walk baseline.

ordinary-least-squares linear regression. We are inspired to include
the random-walk baseline by a famous macroeconomics result that
a random walk beat existing models for predicting exchange rate
out-of-sample [43], and the linear regression model due to its strong
performance in the Fragile Families Challenge [60].

Figure 2 compares the mean-squared error of the best performing
gradient-boosting model and the two baselines. In particular, we
plot the MSE of predictions on data points that were not used in
training; for each data point, we make predictions for all horizons
ℎ, using the models trained in the opposite split. The gradient-
boosted trees model perform much better than the random walk,
and modestly better than the linear model, achieving between 7
to 19% reduction in MSE. Note that the magnitude of the average
prediction errors across the whole population is quite large. For
one year ahead, the MSE suggests that the average magnitude of
prediction errors is around 0.2 in logs. In levels, this corresponds
to an error of about 22% of income. For twelve years ahead, even
the best performing model has average prediction errors of around

40% of income. Recall that prediction error one period ahead is
exactly the definition of the income shock Δ𝑡 and so, assuming
that we have a good approximation of the conditional expectation,
the large absolute mean-squared error indicates a fairly substantial
amount of income risk. However, the average squared-error can
be misleading, and we will show later that the largest prediction
errors are concentrated at the bottom of the income distribution.

Figure 3: Percentage reduction inmean-squared error for pre-
dictions ℎ = 1 year ahead across bins of current income. The
top and bottom plots compare the gradient-boosted model
to the random walk baseline and linear model respectively.

The importance of flexible models becomes more clear in Figures
3 and 4. These figures plot the relative improvement of our gradient-
boosted model against the linear and random walk baselines across
the distribution of current income. We proceed by binning: we
split the observations into 20 equally-sized bins based on quantiles
(from 5% to 95%) of log current income. Each dot in these figures
corresponds to one of these bins. The x-axis is average current in-
come within bins, with values in levels — recall that this represents
inflation-adjusted income in 2018 US dollars. Figure 3 plots the re-
duction in MSE achieved by the gradient-boosted model compared
to the two baselines for predictions ℎ = 1 year ahead. Figure 4
plots the reduction in MSE achieved by the gradient-boosted model
compared to the two baselines for predictions ℎ = 10 years ahead.
Note that the flexible model is especially important when predicting
future income for houses at the bottom of the income distribution.
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Figure 4: Percentage reduction inmean-squared error for pre-
dictions ℎ = 10 year ahead across bins of current income. The
top and bottom plots compare the gradient-boosted model
to the random walk baseline and linear model respectively.

The flexible model achieves nearly 20% improvement versus the
linear model for individuals who make less than $20,000 (2018 US
dollars) a year.

By definition, conditional on any value of the features, our pre-
diction errors should be mean-zero if we have achieved a good
approximation of the conditional expectation.3 We explore this in
Figure 5, where we compare the distribution of prediction errors
across current income for both the linear and gradient-boosted
trees models. We use the same buckets of current income, but the
y-axis now plots the deciles and mean of prediction error within
each bucket. Note that the distribution of prediction errors for the
linear model in the upper plot is asymmetric with non-zero mean,
and with the most substantial deviation for households with cur-
rent income less than $20,000. The 90-10 interquantile range is only
slightly smaller in the lower plot, but most importantly the distribu-
tion has approximately mean-zero everywhere, further validating
our approximation of the conditional expectation.

3To see this, note that E[𝑦𝑡 − E[𝑦𝑡 | I𝑡−1 ] |I𝑡−1 ] = E[𝑦𝑡 | I𝑡−1 ] − E[𝑦𝑡 | I𝑡−1 ] = 0.
Or more intuitively: if the prediction errors were not mean-zero conditional on a
particular input, we could always improve the MSE by shifting all predictions for that
input.

Figure 5: Deciles and mean of the distribution of prediction
errors within bins of current income. The upper and lower
diagrams plot the distribution of errors for the linear model
and gradient-boosted model respectively.

5 SHOCKS
With our approximations of the conditional expectationsE[𝑦𝑡+ℎ |I𝑡 ]
in hand for all ℎ and 𝑡 , we can estimate the shocks Δ𝑡 B 𝑦𝑡 −
E[𝑦𝑡 |I𝑡−1] and their persistence𝜙𝑡,ℎ B E[𝑦𝑡+ℎ |I𝑡 ]−E[𝑦𝑡+ℎ−1 |I𝑡−1]
for every individual in every year of our sample. This produces a
concrete artifact as output: income shock estimates attached to ev-
ery observation that can be used in downstream economic research
tasks. In this section, we use the shock data to provide an initial
characterization of labor income risk in Iceland.

The distribution of total shocks Δ𝑡 , is exactly equal to the distri-
bution of prediction errors, but now we analyze them substantively
instead of as a diagnostic tool for model fitting. From the bottom
diagram in Figure 5, we can see that low-income households face
a much wider distribution of shocks. The 10-30% quantile shocks
and the 70-90% quantile shocks are all at least twice as large for
individuals at the bottom of the income distribution compared to
the middle and top. This is a substantial deviation from the classical
autoregressive model discussed in Section 3.2 that predicts an equal
amount of income risk across the income distribution. Furthermore,
notice that if we had used linear regression for prediction, then
from the upper diagram in Figure 5 we would have incorrectly
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concluded that low income individuals face much larger positive
shocks than negative shocks.

Figure 6: The upper and lower diagrams compare Δ𝑡 and
𝜙𝑡,ℎ for the estimated income shocks computed using the
predictions from our model on held-out samples for ℎ = 1
and ℎ = 10 respectively. We divide the obvservations into 50
bins according to Δ𝑡 ; the x-axis plots the mean value within
each of these bins. The y-axis gives the 10% through 90%
deciles of 𝜙𝑡,ℎ within these bins, each as a different line. We
plot 𝑦 = 𝑥 as a dashed line for reference to indicate perfect
persistence.

Using our methodology, we can also assess how these shocks
persist over time. Figure 6 plots the persistent shocks 𝜙𝑡,ℎ as a
function of the total income shock Δ𝑡 . The upper diagram shows the
results forℎ = 1, and the lower forℎ = 10.We begin by summarizing
some observations for the ℎ = 1 case. First, notice the asymmetry

between positive and negative income shocks, a result that mirrors
recent findings of asymmetry in consumption responses [15]. For
positive total income shocks, there is a clear and roughly linear
relationship between the total shock size and the persistence one
period ahead. A substantial and fairly consistent proportion of
total income shocks are persistent. Negative income shocks, on
the other hand, are typically less persistent on average and the
heterogeneity in persistence for negative shocks (e.g. as represented
by 90-10 interquantile range) also appears to be much larger. That
is, the degree of persistence of negative income shocks varies more
— especially for the lowest income individuals. Furthermore, as
the total income shock becomes more negative, the relationship
between the shock size and persistence appears less linear.

The degree of persistence drops off rapidly at longer horizons.
The lower diagram of Figure 6 plots the deciles for ℎ = 10 case; the
y-axis now corresponds to the change in expected income 10 years
into the future upon receiving the shock, 𝜙𝑡,10 = E[𝑦𝑡+10 |𝐼𝑡 ] −
E[𝑦𝑡+10−1 |𝐼𝑡−1]. Notice that the relationship between the total
shock size and persistence 10 years into the future is much flatter,
although still noticeably asymmetric.

These results contrast sharply with the AR(1) income process
specification from Section 3.2, in which permanent income is per-
fectly persistent and so we should not see any drop over time. The
classical model also does not predict a gap in persistence between
positive and negative income shocks, nor does it predict any het-
erogeneity in the degree of persistence across the distribution of
shocks. Each of these features of our shock series is a substantively
interesting fact about labor income risk in Iceland that cannot be
explained by income processes predominantly adopted in macroe-
conomic structural models.

6 DISCUSSION
6.1 Roles for Prediction in Social Science
Our work emphasizes an under-utilized role for prediction in the
social sciences. While machine learning models cannot predict
future life outcomes with high accuracy [49, 60], they can instead be
used to approximate conditional expectations, and the distribution
of prediction errors can be of scientific interest in its own right. In
this sense, we join Lundberg et al. [42] in stressing the importance
of clearly defining a statistical estimand.

To estimate a conditional expectation, we need to select the best
predictor relatively from among all functions of the input features, a
task for which supervised learning algorithms together with sample-
splitting and cross-validation are well-suited. We can at least par-
tially validate our model by checking for conditionally mean-zero
prediction errors in held out data. Here flexible regressors like
gradient-boosted trees play an important role, as simpler prediction
models like linear regressions are observably mis-specified in our
setting, as we illustrated in Figure 5. Our narrowly-scoped usage
of these predictors contrasts with typical applied settings, where
a predictor is trained from historical data, and then deployed in
real-time on newly collected data that will not generally be drawn
from the same distribution as the training data. We hope to have
demonstrated the utility of our methodology by illustrating the
substantial inequality in the size and persistence of labor income
shocks in Iceland, especially for low income individuals.
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6.2 What can we do with this shock series?
One benefit of our procedure is that we produce a concrete research
artifact: a series of income shocks and their persistence for every
individual in every year of our sample. These shocks are interesting
in their own right for studying labor income risk, see our discussion
above about the distribution of shocks over quantiles of current
income, and the asymmetry and heterogeneity of shock persistence.
However, the principle goal is to use these shocks in downstream
scientific tasks. In this section, we briefly highlight directions for
future work.

First, there is a large literature on scarring during business cy-
cles. In the United States, individuals who first entered the labor
market during or immediately before the Great Recession faced
worse outcomes that persisted even after the economy recovered
[58]. Because we condition on both age and year, we can directly
assess the size and persistence profile of shocks that occur in the
Great Recession in Iceland, which could provide valuable additional
evidence on scarring.

Second, we can estimate the response of household consump-
tion to these shocks. One approach to studying the consumption
response would be to estimate the average derivative of consump-
tion with respect to these shocks and their persistence over time.
Furthermore, since our shocks are computed using the full hetero-
geneity across observables, we would be able to break down how
these consumption responses differ across income, age, education,
assets, etc.

Finally, structural macroeconomic models typically use a simple
autoregressive model or first-order discrete Markov chain for the
income process when modelling household behavior. Typically, the
parameters of this income process are estimated separately, and
then the macroeconomic model is calibrated using simulated draws.
Our estimates of expected future income give us a way to potentially
test these macroeconomic models directly with data, subject to the
limitations described above on the difference between our predic-
tions formed with tax data, and the private future expectations of
individuals
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A CROSS-VALIDATION AND MODEL
SELECTION

As discussed in the text, we performed model selection and hy-
perparameter tuning using 5-fold cross-validation. We compared a
variety of linear and tree ensemble models. For linear models, we
compared elastic net regressions, varying the degree of regulariza-
tion and the relative weight for the ℓ2 and ℓ1 norms. Interestingly,
across all linear models, un-regularized linear regression consis-
tently performed best, which probably reflects our large sample size
relative to the number of features. For random forests and gradient-
boosted trees, we varied the subsampling strategy, the number of
trees, the maximum tree depth, the maximum leaf nodes, and the
maximum number of features. For gradient-boosted trees, we also
varied the optimization learning rate. We also considered training
the same models but using only the first four and first five lags —
these models performed worse than the tree-based models with six
lags, but not by much. Across all horizons, gradient-boosted trees
had the best mean-squared error in cross-validation.

Due to the high degree of dependence between observations on
the same individual, we perform cross-validation at the individ-
ual level. However, some dependences are likely to remain across
individuals. This is not necessarily a problem for our statistical
procedure. We split individuals randomly into two subsamples and
if we interpret the conditional expectation as being with respect
to this sampling variation from a larger finite population, then
dependence between individuals may not be an issue. However,
this perspective might make interpretation more difficult, so we
consider common depedences between individuals here. One ob-
vious concern is domestic partners, whose labor income is very
likely correlated. In future work, we plan on using tax identifiers
to collect households into single units to ameliorate this problem.
Another interesting source of dependence in labor income is when
individuals work for the same firm. For example, see the discussion
of firm fixed effects in Card et al [11]. We have matched firm data
for individuals in Iceland, but only for the years 2000 and onward.
We hope to explore the correlations between individuals working
for the same firm in future work.
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