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Abstract

Many approaches in domain adaptation and
observational causal inference re-weight out-
comes from a source population to estimate
missing outcomes in a target population. We
study weighting estimators, known as min-
imax weights, that minimize the worst-case
error under restrictions on the outcome model.
Under these restrictions, we derive a dual
characterization by writing the variance of
the weights as a φ-divergence. This character-
ization shows that the minimax weights are
a (rescaled and recentered) member of the
assumed outcome function class. We draw
connections to density ratio estimation, but
show that the source and target distribution
do not need common support. Finally, we
show conditions under which our results re-
main robust when our assumptions on the
outcomes are wrong.

1 Introduction

Using covariates to transfer outcome information from
one setting to another is a central task in science and
engineering, including for domain adaptation, observa-
tional causal inference, and missing data imputation.
These tasks share a common structure: we observe
covariates and outcomes for a source distribution and
want to predict outcomes given covariates in a target
data set, which might have a different covariate dis-
tribution than the source. One standard approach is
to reweight the source distribution to have a similar
covariate distribution to the target, known as impor-
tance weighting for domain adaptation under covariate
shift (Sugiyama et al., 2007a) and inverse propensity
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score weighting (IPW) for observational causal infer-
ence (Rosenbaum and Rubin, 1983). When the source
and target distributions have common support, using
the density ratio for weights leads to unbiased estima-
tion. Importantly, this approach does not require any
restrictions on the outcome model.

This approach has several drawbacks, however. First,
using the density ratio for weights can lead to extremely
large variance and unstable estimation (Kang et al.,
2007; Cortes et al., 2010). Second, the density ratio is
notoriously difficult to estimate, and simple plug-in es-
timates do not guarantee covariate balance between the
reweighted source distribution and target distributions
(see Ben-Michael et al., 2021).

An alternative approach instead finds weights that
directly target covariate balance, with the choice of
balance measure motivated (often implicitly) by restric-
tions on the outcome model (e.g., Gretton et al., 2009;
Imai and Ratkovic, 2014). Of particular interest are
so-called minimax balancing weights, which constrain
the worst-case bias between groups over an outcome
function class, enabling a bias-variance trade-off (see
Zubizarreta, 2015; Hirshberg et al., 2019; Kallus, 2020).

1.1 Contributions

We begin with the premise that restrictions on the
outcome model, commonly used in the literature, are
typically necessary in practice. In particular, without
any restrictions, the only weights that guarantee finite
bias are the density ratio, which may have extreme
variance or may not exist.

Given such restrictions, we then provide a new dual
characterization of the minimax weights. We do so by
interpreting the variance of the weights as a χ2 diver-
gence and then applying variational representations of
φ-divergences. We use this characterization to make
two points. First, we show that the minimax weights
are always a (rescaled and recentered) function from
the assumed outcome function class. Thus, if the out-
come is assumed to be in an RKHS, the corresponding
weights will be in the same RKHS. We precisely char-
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acterize this relationship and also show computational
gains from this alternative approach.

Second, we show that after making an assumption on
the outcome function we no longer need the density
ratio to exist. We connect the dual problem to a gener-
alized form of density ratio estimation, without the re-
quirement that the source and target distribution have
common support. While it is well known that outcome
modeling strategies do not require common support,
this result is somewhat surprising for weighting estima-
tors, where this assumption is common (however, see
Kallus, 2020).

Finally, given the central role of restrictions on the
outcome model, we briefly consider the setting in which
this assumption is incorrect. In particular, we provide
simple moment conditions under which we can retain a
finite bound on the error when the true outcome model
is not in the assumed class.

1.2 Related work

Estimators that target balance. Many reweight-
ing estimators in causal inference explicitly target the
discrepancy between source and target distribution
(called balance). Examples include Hainmueller (2012);
Zubizarreta (2015); Athey et al. (2018); Hirshberg et al.
(2019); Tan (2020). See Ben-Michael et al. (2021)
for a summary. The literature on domain adaptation
also uses worst-case discrepancy between distributions
(Mansour et al., 2009; Gretton et al., 2009; Yu and
Szepesvári, 2012; Courty et al., 2014). Some approaches
learn representations that minimize these discrepancies
(Ganin et al., 2016; Shen et al., 2018; Assaad et al.,
2021). Closely related are estimators that directly esti-
mate the density ratio between two groups through a
surrogate loss (Sugiyama et al., 2007b; Nguyen et al.,
2010; Sugiyama et al., 2012).

Overlap in causal inference and adversarial
training. Many existing theoretical treatments of bal-
ancing weights require the density ratio to exist (called
overlap in causal inference), which is typically used for
proving asymptotic consistency (see Hirshberg et al.,
2019; Kallus, 2020). This assumption, however, can
be highly restrictive especially in high-dimensions, as
illustrated by D’Amour et al. (2021). See also Khan
and Tamer (2010) for a discussion of the implications
of overlap violations for causal inference. The same
topic arises in adversarial training. See for example,
Dupuis and Mao (2019); Glaser et al. (2021); Birrell
et al. (2020a), who generalize φ-divergences to distri-
butions that do not have common support. This idea
is applied to GANs in Song and Ermon (2020).1

1Equation (11) in Song and Ermon (2020) is exactly
the same as the minimax balancing objective from causal

Domain adaptation and causal inference. Recent
work combines ideas from these two literatures. For
example, Shalit et al. (2017); Johansson et al. (2020) use
integral probability metrics to estimate causal effects
without the need for an overlap assumption. The same
idea is used in Kallus (2020) for matching estimators in
causal inference. Other work has made the connection
between causal inference and adversarial training (Yoon
et al., 2018; Ozery-Flato et al., 2018).

2 Problem Setup

Let X ∈ X denote covariates, and Y ∈ R denote
outcomes. We study the domain adaptation problem
with source and target populations, P and Q, with
different joint distributions over X and Y . We observe
X in both populations, but only observe the outcomes,
Y , for the source population, P . The goal is to estimate
the mean outcome in the target population, EQ[Y ].

We consider reweighting estimators, which use the
known differences in X to transfer information about
Y from P to Q. A key assumption for reweighting esti-
mators is the covariate shift or ignorability assumption,
which requires the relationship between covariates and
outcomes to be the same across the two groups:

Assumption 1 (Ignorability). For all x ∈ X ,

P (Y |X = x) = Q(Y |X = x).

Given Assumption 1, we can estimate EQ[Y ] using
EP [w(X)Y ] with weights w that are a function of the
observed covariates. Typically, Assumption 1 is paired
with a restriction that the density ratio dQ/dP ex-
ists, also known as overlap or continuity in different
literatures:

Definition (Common Support). We say P and Q
have common support if Q is absolutely continuous
with respect to P .

In the special case where P and Q have common sup-
port and Assumption 1 holds, then w = dQ/dP results
in an unbiased estimator:

EP
[
dQ

dP
(X) Y

]
= EP

[
dQ

dP
(X) EP [Y |X]

]
= EQ[EP [Y |X]] = EQ[Y ],

where we use ignorability for the last equality. We
will consider weights such that EP [w(X)] = 1, i.e. we
always end up with the same “size” population that we
started with. However, in general we will not assume
that P and Q have common support.

inference, where r are the weights, f is the dispersion, and
T corresponds to the functions to balance.



Manuscript under review by AISTATS 2022

2.1 Mean Squared Error

We would like to choose weights w(X) that mini-
mize the mean squared error (MSE) of EP [w(X)Y ]
for estimating EQ[Y ]. Define the outcome function,
f0(x) := EP [Y |X = x] = EQ[Y |X = x] and likewise,
let σ2

0(x) be the conditional variance of Y . We expand
the MSE via the standard bias-variance decomposition:

MSE(w) = EP [(w(X)Y − EQ[Y ])2]

= (EP [w(X)Y ]− EQ[Y ])2 + VarP [w(X)Y ]

= (EP [w(X)f0(X)]− EQ[f0(X)])2 (1)

+ EP [w(X)2σ2
0(X)]. (2)

The MSE depends on two quantities: (1) the imbalance
of the mean of the outcome function f0 between the re-
weighted source distribution and the target distribution;
and (2) the variability of the weights under the source
distribution which amplifies the noise in the outcomes.
In practice, it is convenient to consider either the ho-
moskedastic case, σ2

0(x) = σ2,∀x, or to upper-bound
(2) via σ2EP [w2], where σ2 := supx∈X σ

2
0(x) and where

we assume 0 < σ2 < ∞. We can then replace (2) by
σ2VarP [w] without affecting the minimizer over w.

A natural idea is to choose weights that trade-off bias
and variance to minimize the MSE. While f0 is un-
known in practice, if we assume that f0 belongs to
some function class F , we can upper bound (1) by
the worst-case difference in means over F . We can
then find weights that minimize the resulting bound
on the MSE, sometimes known as minimax weights in
observational causal inference (Hirshberg et al., 2019).

2.2 Notation

We will proceed more formally. Let (X ,S) be a measur-
able space.2 Let P and Q be given probability measures
on (X ,S). Let f0 be a real-valued measurable function
on X . Denote M(X ) the space of signed finite mea-
sures on (X ,S) andM(P ) those absolutely continuous
with respect to (a.c. w.r.t) P . Denote P(X ) the space
of probability measures on (X ,S) and P(P ) those a.c.
w.r.t. P .

With a slight abuse of notation, for measurable f : X →
R and both M ∈M(X ) and M ∈ P(X ), we will write
EM [f ] :=

∫
X f(x)dM(x). We assume EP [|f0|] < ∞

and EQ[|f0|] <∞.

The problem of choosing weights can be reformulated as
finding a measure R ∈M(P ) such that

∫
X dR(x) = 1,

with w := dR/dP . This corresponds to the intuition
behind reweighting as creating a “pseudo-population”

2To side-step topological issues, we assume that X is a
separable Banach space.

based on P intended to match Q. We will therefore
often use w and R interchangably.

While our setting and results are quite general, it may
be helpful for the reader to keep in mind the case
where X is finite and discrete with cardinality n. In
this case, P and Q are probability vectors of length
n and measurable functions are simply vectors in Rn.
Likewise, M(X ) is just Rn.

2.3 Assumptions on the Outcome Function

A bias-variance trade-off only exists if we place restric-
tions on f0. When f0 is completely unrestricted, for
any w 6= dQ/dP , there always exists an f0 that can
make the bias term (1) arbitrarily large. As we discuss
above, setting w = dQ/dP has several downsides, in-
cluding possibly extreme weights. To make progress,
we can instead assume that f0 belongs to some function
class F :

Assumption 2. The outcome function f0 belongs to
F where F is a closed and convex set of measurable
real-valued functions such that for all f ∈ F , EP [|f |] <
∞,EQ[|f |] <∞, and −f ∈ F .

In practice, for casual inference and missing value im-
putation, Assumption 2 requires making an assumption
about the relation of the outcome of interest to the
covariates. For the covariate shift problem or for aug-
mented estimators like Hirshberg and Wager (2017),
Assumption 2 requires making an assumption about
the relationship of the accuracy of a predictor to its
input features.

Many choices of F in Assumption 2 are quite general
and justifiable with domain knowledge. Some examples
for 0 < B <∞ are:

Bounded functions: F∞ := {f : ‖f‖∞ ≤ B}
Lipschitz functions: FLip(c) := {f : ‖f‖Lip(c) ≤ B}

RKHS functions: FH := {f : ‖f‖H ≤ B},

where ‖ · ‖Lip(c) denotes the Lipschitz constant with
respect to a metric c and ‖ · ‖H denotes the norm in
some Reproducing Kernel Hilbert Space (RKHS), H.

Under Assumption 2, the bias is bounded by the worst-
case discrepancy in means over F . This quantity is an
example of an integral probability metric (IPM), defined
for any set of functions, G, and any M,N ∈M(X ) as:3

IPMG(M,N) := sup
g∈G

{
|EM [g]− EN [g]|

}
.

The bias term (1) for a re-weighted population R under

3If g ∈ G =⇒ −g ∈ G then the absolute value can be
omitted.
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Assumption 2 is upper-bounded by:

|EQ[f0]− ER[f0]| ≤ IPMF (Q,R).

This value is always finite by our assumptions on F and
we can trade it off against the variance of the weights.

We now define several quantities that will be useful in
our discussion below, beginning with maximum and
minimum bias.

Definition (Maximum and minimum bias). The max-
imum bias, δmax, is the bias under uniform weights
(when R = P ). The minimum bias, δmin, is the small-
est bias achieveable by reweighting P .

δmax := IPMF (Q,P ) (3)

δmin := inf
R∈M(P )
ER[1]=1

{
IPMF (Q,R)

}
. (4)

Since R = P is feasible (4), δmin ≤ δmax. If P and Q
have common support, R = Q is also feasible, which
implies δmin = 0.

Definition (Distribution-defining). F is distribution-
defining if ∀M,N ∈ P(X ), IPMF (M,N) = 0 if and
only if M = N .

For example, F∞ and FLip(c) are distribution-defining,
as is FH for a universal kernel. When F is distribution-
defining then only dQ/dP can achieve worst-case bias
zero, δmin = 0, and if Q and P do not have common
support then δmin > 0.

2.4 The Variance of the Weights

We now characterize the variance term in (2) as a spe-
cial case of a class of information-theoretic divergences
called φ-divergences. We use this to derive our dual-
ity result and to make a novel connection to work on
density ratio estimation and adversarial training.

For any convex function φ with φ(1) = 0, the φ-
divergence between M ∈M(X ) and N ∈ P(X ) is:

Dφ(M ||N) := EN [φ (dM/dN)] ,

where Dφ(M ||N) =∞ if M and N do not have com-
mon support. Given this definition, the variance of
the weights is exactly the divergence between R and P
with φ(x) = x2−1. This is known as the χ2 divergence,
and we denote it D2(R||P ).

VarP [w] = EP [w2 − 1] = EP

[(
dR

dP

)2

− 1

]
= D2(R||P ).

We can then upper bound the variance term in (2)
by σ2D2(R||P ), where σ2 is generally unknown and is
regarded as a tuning parameter.

Variational representations. It is possible to ex-
press φ-divergences in a dual form, called variational
representations, as a supremum over measurable func-
tions. Let M ∈ M(X ) and let N ∈ P(X ). Let φ∗

denote the convex conjugate of φ. Then Keziou (2003)
and Nguyen et al. (2005) show that:

Dφ(M ||N) = sup
f

{
EM [f ]− EN [φ∗(f)]

}
, (5)

where the supremum is over all real-valued measur-
able functions on X . If we additionally assume, as we
do for R, that EM [1] = 1, then we have the tighter
representation,

Dφ(M ||N) = sup
f

{
EM [f ]− ΛφN [f ]

}
(6)

where ΛφN [f ] := inf
λ∈R
{λ+ EN [φ∗(f − λ)]}.

This result, using the infimum over λ in the spirit of
Ruderman et al. (2012), appears to have been inde-
pendently proposed by Agrawal and Horel (2020) and
Birrell et al. (2020b). Under minimal conditions on φ,
the suprema in (5) and (6) are achieved by φ′(dM/dN).
We will show that estimating the minimax weights given
Assumption 2 is equivalent to maximizing (6) over the
function class F .

2.5 Minimax Optimal Weights

We can combine the upper bounds from Sections 2.3
and 2.4 to bound the worst-case MSE. We refer to the
weights that minimize this bound as minimax optimal
weights, or just minimax weights. These weights solve
the following optimization problem:

inf
R∈M(P )
ER[1]=1

{
sup
f∈F
{EQ[f ]− ER[f ]}2

+ σ2EP

[(
dR

dP

)2

− 1

]}
(7)

= inf
R∈M(P )
ER[1]=1

{
IPMF (Q,R)2 + σ2D2(R||P )

}
A solution always exists because the objective is finite
for R = P , which is feasible. For σ2 > 0, the problem
is strongly convex in R and has a unique solution.

Furthermore, ∃δ > 0 such that (7) has the same mini-
mizer as:

inf
R∈M(P )
ER[1]=1

D2(R||P ) (8)

such that IPMF (Q,R) ≤ δ.

We view σ2 and δ as exchangeable tuning parameters:
σ2 represents the importance of reducing the variance
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of the weights; δ represents the level of acceptable
bias. For σ2 ∈ (0,∞), the corresponding δ lies in
(δmin, δmax).

3 Duality Theory for Minimax
Weights

We begin by giving a dual characterization of the solu-
tions, R∗, to problems (7) and (8) and the correspond-
ing minimax weights w∗ = dR∗/dP .

3.1 Minimax Weights over a Function Class

In this section, we derive a duality result that char-
acterizes the minimax weights under Assumption 2
where f0 ∈ F . The following theorem shows that the
minimax weights are always a rescaled and recentered
member of the function class F , where the particular
function and scaling factor depend on the worst-case
bias tuning parameter δ.

Theorem 3.1. Under Assumptions 1 and 2, for δ >
δmin, the optimization problem (4) has a unique solu-
tion,

dR∗

dP
= 1 +

(
EQ[f∗]− EP [f∗]− δ

VarP [f∗]

)
(f∗ − EP [f∗]) ,

where, for a unique µ ≥ 0 corresponding to δ, f∗

achieves the following supremum:

sup
f∈F

{
EQ[f ]− EP [f ]− µ

4
VarP [f ]

}
. (9)

The resulting MSE is:

MSE(R∗) ≤ δ2 + σ2 (EQ[f∗]− EP [f∗]− δ)2

Varp[f∗]
. (10)

The proof is in the Appendix. The key idea is that solv-
ing the supremum in the constraint of (8) is hard for
arbitrary F . Duality allows us to exchange the subprob-
lem over function classes for a sub-problem involving
the χ2 divergence. Then we apply the variational repre-
sentation (6) to arrive at a single optimization problem
over functions, (9).

Remark 3.1 (Other φ-Divergences). We can replace
the χ2 divergence in the balancing weight problems
(7) and (8) with other φ divergences. A duality result
corresponding to Theorem 3.1 will hold for any convex
function φ such that φ(1) = 0 with convex conjugate φ∗

such that {φ∗ <∞} = R. See the Appendix for details.
We can use this general formulation to derive results
for, e.g., non-negative weights or the KL divergence.

Remark 3.2 (Tuning Parameters). Just like we can
treat δ as a tuning parameter in (8) in place of an

unknown σ2, we can treat µ as a tuning parameter in-
stead and solve (9) directly. The corresponding weights
are:

dR∗

dP
= 1 +

µ

2
(f∗ − EP [f∗]) (11)

and we can recover the corresponding δ via:

δ = EQ[f∗]− EP [f∗]− µ

2
VarP [f∗].

Remark 3.3 (Complete Information). The case where
we know f0 exactly is a special case of Theorem 3.1
for F equal to the convex hull of {f0,−f0}. Assume
without loss of generality4 that EQ[f0] ≥ EP [f0]. Then:

dR∗

dP
= 1 +

(
EQ[f0]− EP [f0]− δ

VarP [f0]

)
(f0 − EP [f0]) .

In this case, the optimal weights are always a rescaled
and recentered version of f0. The shape of weights
does not depend on P , Q, or δ; only the scaling factor
does. The MSE bound (10) becomes a quadratic in δ
and we can solve for the optimal bias:

δ∗ =

(
σ2

VarP [f0] + σ2

)
(EQ[f0]− EP [f0]),

which gives

MSE(w∗) ≤
(

σ2

VarP [f0] + σ2

)
(EQ[f0]− EP [f0])2.

In other words, with complete information, we can ana-
lytically find the optimal bias-variance trade-off. Under
homoskedasticity, these weights have the smallest MSE
over all possible w such that EP [w] = 1.

3.2 The Function f∗ Interpolates Between
Two Extremes

We now show that as δ goes from δmax to δmin, f∗

interpolates smoothly between two extremes. The ex-
isting literature on balancing weights emphasizes the
bias-variance trade-off, where weights with large bias
are uniform, whereas weights with small bias can be
highly dispersed. Using the dual optimal function f∗,
we show how the shape of the weights changes as well.

For simplicity, we will discuss the setting where Q and
P have common support and F is distribution-defining,
so that δmin = 0. We will return to the general setting
in Section 4.

When δ = δmax, we have corresponding dual parameter
µ = 0. The solution to (9) is f∗ = fmax which achieves
the supremum for IPM(Q,P ). In other words, fmax is

4Otherwise, replace f0 with −f0.
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the function with worst-case bias between Q and P .
At this extreme, plugging µ = 0 into (11), the weights
are uniform, and R∗ = P .

At the second extreme, δ = 0. By the distribution
defining assumption, the weights equal dQ/dP , and
R∗ = Q. If F contains a rescaled/recentered version
of the density ratio, then ∃µmax <∞ such that f∗ =
fratio, where:

fratio − EP [fratio] =
2

µmax

(
dQ

dP
− 1

)
As the bias goes from δmax to 0, the shape of the weights,
f∗, interpolates between fmax and fratio, scaled by the
factor µ which goes from 0 to µmax.

Example 1 (Discrete). For a concrete example, con-
sider discrete X with |X | = 3. We choose P =
[0.2, 0.3, 0.5] and Q = [0.5, 0.45, 0.05]. We let F =
{f ∈ R3 : ‖f‖∞ ≤ 1}. The shape of the minimax
weights, as determined by the solution to (9), are ex-
tremely simple. For µ ∈ [0, 1], f∗ = fmax = [1, 1,−1].
For µ = µmax, f∗ = fratio is just the density ratio
rescaled to fit in [−1, 1]. For µ ∈ (1, µmax), f∗ is ex-
actly all convex combinations of fmax and fratio. See
Figure 1.

Figure 1: The optimal weights and the corresponding
dual optimal function for the discrete example for µ
ranging from 0 (yellow) to µmax (black).

Next, we give an example where F does not contain a
rescaled version of dQ/dP :

Example 2 (Gaussian). Let X = R. Let P be Gaus-
sian with mean 1 and variance 1, let Q be Gaussian
with mean 2 and variance 1, and let p and q denote
their densities. Let F = {f : ‖f‖∞ ≤ 1}.

Figure 2: The optimal weights and corresponding dual
optimal function for the Gaussian example for δ starting
at δmax and shrinking towards zero.

On one extreme, for µ = 0, fmax has an explicit form:
fmax(x) = 1 when q(x) ≥ p(x) and fmax(x) = −1 when
q(x) < p(x).

On the other hand, the density ratio is not bounded,
and so there is no fratio which is a rescaled version of
q/p in F and no µmax < ∞. Instead, as δ → 0 the
corresponding µ→∞.

As a result, the minimax weights still have a simple
characterization. As µ goes from 0→∞, f∗ starts at
fmax and becomes shaped more and more like q/p but
constrained to [−1, 1]. See the bottom panel of Figure
2. The corresponding δ goes from δmax → 0 and for
each δ the minimax weights are exactly equal to q/p
but truncated above and below. The level of truncation
expands as µ increases, and the weights converge to
the true density ratio. See the top panel of Figure 2.

4 Relationship to Density Ratio
Estimation

The previous examples establish a clear connection to
density ratio estimation. In this section, we use the dual
problem (9) to show that the minimax weights problem
is a generalized form of density ratio estimation, but
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which does not require common support once we have
made Assumption 2.

We begin by establishing a clearer link between (9) and
our characterization of the variance of the weights as a
φ-divergence as used in the proof of Theorem 3.1. Con-
sider the variational representation (6). Specializing to
φ(x) = µ(x2 − 1) for µ > 0, we can write the weighted
χ2 divergence between Q and P as:

1

µ
D2(Q||P ) = sup

f

{
EQ[f ]− EP [f ]− µ

4
VarP [f ]

}
,

where the supremum is over all real-valued measurable
functions. If Q and P have common support then
the supremum is achieved by 2µ(dQ/dP ), otherwise
D2(Q||P ) =∞. The variational representation is iden-
tical to (9), except that the problem in (9) is restricted
to functions in F .

We immediately have the following corollary:

Corollary 4.1. Under the conditions in Theorem 3.1,

2

µ

dQ

dP
∈ F =⇒ f∗ =

2

µ

dQ

dP
and

dR∗

dP
=
dQ

dP
.

If the density ratio exists and a scaled version belongs to
the outcome function class, then it is minimax optimal
to reweight so that there is zero bias.

There is an immediate connection to density ratio esti-
mation using φ-divergences (Nguyen et al., 2010), which
also maximizes a variational representation within a
function class. Unlike that approach, however, we do
not require that the density ratio belongs to F or even
exists. If Q and P do not have common support, then
the supremum in (9) is still finite when restricted to F .

Instead, we can reinterpret the dual solution and cor-
responding minimax weights as “density ratio” estima-
tion in a more general sense. The true density ratio
transforms P into Q with zero discrepancy on any func-
tion, which is not possible when P and Q lack common
support. The minimax weights, dR∗/dP , are a ratio
that transfer our knowledge about Y ∼ P into knowl-
edge about Y ∼ Q, and we do not need to make any
assumption about the form of this ratio. Instead our
assumptions about the relationship between Y and X
pin down the functional form for us via (11).

5 IHDP Example

In this section, we walk through an application to make
the previous discussion on density ratio estimation more
concrete. We use an RKHS for the outcome function,
resulting in the KOM estimator from Kallus (2020).
However, we solve the problem in the dual to provide
an intuitive characterization of the minimax weights.

5.1 The IHDP Dataset and Setup

The Infant Health and Development Program (IHDP)
data set is a standard observational causal inference
benchmark from Hill (2011), based on data from a
randomized control trial of an intensive home visiting
and childcare intervention for low birth weight infants
born in 1985. We consider a non-experimental subset
of the original data with n0 = 608 children assigned to
control, n1 = 139 children assigned to treatment, and
n = 747 total children. For all children, we have a range
of baseline covariates, including both categorical co-
variates, like the mother’s educational attainment, and
continuous covariates, like the child’s birth weight. Our
goal is to estimate the average outcome (a standardized
test score) in the absence of the intensive intervention.
We observe this outcome for the 608 control children,
and want to re-weight these observations to estimate
the missing mean for the 139 treated children.

To do so, we use an RKHS as a flexible but tractable
functional form for f0. In particular, we assume that
F = FBH := {f : ‖f‖H ≤ B} for B < ∞, where H is
the RKHS induced by the Gaussian kernel,

K(x1, x2) = exp

(
−1

2
‖x1 − x2‖22

)
.

Define K ∈ Rn×n with Kij = K(Xi, Xj). Then for any
f ∈ F , there exists an α ∈ Rn such that αTKα ≤ B
and f(Xj) =

∑n
i=1 αiKij ,∀j.

Problem (9) can be written as a simple quadratic op-
timization problem over these vectors α. We find the
minimax weights for many values of the tuning param-
eter µ. See the Appendix for details.

Note the role of the smoothness of the function class FBH .
Intuitively, we think of, say, Xi = 1.71 and Xj = 1.72
as being close to each other. For arbitrary f , however,
f(1.71) might be vary large and f(1.72) might be very
small. The kernel K provides a formal sense in which
data points are close to each other.

5.2 The Minimax Weights

As in Examples 1 and 2, the minimax weights interpo-
late between two extremes. At one extreme we have
µ = 0, which finds uniform weights that minimize the
variance. The solution to (9) is then f∗ = fmax, i.e.,
the function in FBH with the largest difference in means
between Q and P , and with corresponding bias δmax.

At the other extreme, finding the weights with mini-
mum bias takes more care. Unlike Examples 1 and 2,
we do not assume that P and Q have common support
and therefore there are no weights that achieve zero
bias. We instead find weights that achieve the smallest
possible bias over FBH , δmin, which corresponds to some
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tuning parameter µ = µmax < ∞. Finally, the dual
optimal f∗ = fmin for µmax gives us the shape of the
weights with minimum bias. We can think of these
weights as an approximate “density ratio”—these are
the weights that transform P to look as much like Q
as possible on FBH , even though Q and P have disjoint
support.

As we go from δmax to δmin, the weights interpolate
between fmax and fmin scaled by a factor µ which
increases from 0 to µmax. See Figure 3.

Figure 3: The optimal weights and corresponding dual
optimal function for the IHDP example for the extreme
values of µ and one intermediate value.

Remark 5.1 (The Role of the Kernel). As the radius
of the RKHS-norm ball B increases the value of µmax

changes, but the weights that achieve δmin remain the
same. Thus it is the smoothness properties of K that
drive the qualitative behavior of the weights, not the
value of the parameter B.

Remark 5.2 (Connection to Classification). If we sort
all data points (treated and control) according to the
dual optimal solution f∗ for µ = µmax, then the treated
and control units are perfectly sorted.5 This provides a
direct connection to work on permutation weighting in
Arbour et al. (2021) which solves the balancing weights
problem by training a classifier.

5This is not true for µ < µmax. In this case some
higher weights are assigned to P and some lower weights
are assigned to Q.

Remark 5.3 (Computational Advantages of the Dual).
In some situations, it is computationally easier to solve
the dual problem (9) directly instead of the primal
problem (8). For an RKHS, there is a closed form of
the IPM available which makes the primal and dual
problems equally easy to solve. But consider a class of
neural networks parameterized by network weights θ:

FBNN := {fθ : ‖θ‖ ≤ B}

Then handling the IPM constraint in the primal prob-
lem requires adversarial training which can be quite
challenging. On the other hand, (9) requires training a
neural network once with a convex loss function which
can be accomplished with off-the-shelf SGD.

6 Robustness

Minimax weights rely heavily on the function class
in Assumption 2. In this section, we show that with
minimal moment conditions we can still retain a bound
on the bias even if we have misspecified the function
class F . We consider two functions classes. First, F for
which we solve (8) to find R∗ such that IPMF (Q,R∗) ≤
δ. Second, the true function class, G such that f0 ∈ G
and f0 /∈ F . To bound the bias, we need to show that

IPMF (Q,R∗) ≤ δ =⇒ IPMG(Q,R∗) ≤ ρ(δ) (12)

for some ρ <∞ which has good scaling with δ. Without
further assumptions, (12) will not hold for any G.

IPMs correspond to common perturbations in the ro-
bust statistics literature. For example, IPMF∞ and
IPMFLip(c)

are equivalent to the total variation (TV)
distance and Wasserstein distance respectively. For
F = F∞, we can apply Lemma E.2 from Zhu et al.
(2019) to achieve (12) for any G. We require an Orlicz
norm bound under Q and R∗ on g(X) for all g ∈ G. For
a simple example, let G be linear: {g = βTx : ‖β‖ ≤ 1}.
Then we get the following two results:

Proposition 6.1. If R∗ and Q have bounded covari-
ance, then we have the following upper bound on the
bias:

|EQ[f0]− ER∗ [f0]| ≤ ρ(δ),

where ρ(δ) = O(
√
δ).

Proposition 6.2. If R∗ and Q are sub-Gaussian, then
we have the following upper bound on the bias:

|EQ[f0]− ER∗ [f0]| ≤ ρ(δ),

where ρ(δ) = O(δ
√

log(1/δ)).

For general G, the rate of ρ in terms of δ is similar,
but the moment conditions on X become stronger. In
practice, these robust statistics results mean that we
can make a best guess about F but as long as Q is
sufficiently “nice”, the true bias will not be much larger
than δ.
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